Đáp án A
Phương pháp:
Áp dụng tính chất của phép tịnh tiến điểm M thành \(M'\) theo vectơ v thì \(\overrightarrow {MM'} = \vec v\).
Cách giải:
Đường tròn \(\left( C \right)\): \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\) có tâm \(I\left( {1; - 2} \right)\); bán kính \(R = 3\).
Gọi \(I'\) là tâm đường tròn \(\left( {C'} \right)\).
Phép tịnh tiến điểm I thành điểm \(I'\) theo véc-tơ \(\vec v\left( {3;3} \right)\) thì \(\overrightarrow {II'} = \vec v\)
Suy ra \(I'\left( {4;1} \right)\)
Đường tròn \(\left( {C'} \right)\) có tâm là \(I'\left( {4;1} \right)\); \(R = 3\) nên có dạng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\).