Phương trình \(3{\tan ^2}x + \left( {6 - \sqrt 3 } \right)\tan x - 2\sqrt 3 = 0\) có nghiệm là:
Đáp án C
Phương pháp:
Giải phương trình bậc 2 rồi tìm nghiệm.
Cách giải:
Ta có \(3{\tan ^2}x + \left( {6 - \sqrt 3 } \right)\tan x - 2\sqrt 3 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\tan x = \frac{{\sqrt 3 }}{3}\\\tan x = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = \arctan \left( { - 2} \right) + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Cho các mệnh đề sau:
\(\left( I \right)\): Hàm số \(y = \sin x\) có chu kì là \(\frac{\pi }{2}\).
\(\left( {II} \right)\): Hàm số \(y = \tan x\) có tập giá trị là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
\(\left( {III} \right)\): Đồ thị hàm số \(y = \cos x\) đối xứng qua trục tung.
\(\left( {IV} \right)\): Hàm số \(y = \cot x\) đồng biến trên \(\left( { - \pi ;0} \right)\).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?