Đáp án D
Phương pháp:
Sử dụng tính chất nhị thức Niu-Tơn.
Cách giải:
+) Ta có \({\left( {1 + 2} \right)^n} = \sum\limits_{k \to 0}^n {C_n^k{{.2}^k}} = C_n^0 + 2C_n^1 + ... + {2^n}.C_n^n\)
Mà \(C_n^0 + 2C_n^1 + ... + {2^n}.C_n^n = 243\)
Nên \({3^n} = 243 \Leftrightarrow n = 5\)
+) Mặt khác \(C_{2m}^1 + C_{2m}^3 + ... + C_{2m}^{2m - 1} = 2048\).
\( \Leftrightarrow \frac{{{2^{2m}}}}{2} = 2048 \Leftrightarrow m = 6\)
Do đó \(m > n\).
Cho các mệnh đề sau:
\(\left( I \right)\): Hàm số \(y = \sin x\) có chu kì là \(\frac{\pi }{2}\).
\(\left( {II} \right)\): Hàm số \(y = \tan x\) có tập giá trị là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
\(\left( {III} \right)\): Đồ thị hàm số \(y = \cos x\) đối xứng qua trục tung.
\(\left( {IV} \right)\): Hàm số \(y = \cot x\) đồng biến trên \(\left( { - \pi ;0} \right)\).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?