Phép quay biến đường thẳng thành đường thẳng, biến đoạn thẳng thảnh đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính với nó.
Câu trả lời này có hữu ích không?
0
0
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD, đáy ABCD là tứ giác có các cạnh đối diện không song song. Lấy điểm M thuộc miền trong tam giác SCD. Tìm giao tuyến của hai mặt phẳng \(\left( {ABM} \right)\) và \(\left( {SCD} \right)\).
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC; G là trọng tâm của tam giác BCD. Tìm giao điểm K của đường thẳng MG và mặt phẳng \(\left( {ABC} \right)\).
Một lớp học gồm 20 học sinh nam và 15 học sinh nữ. Cô giáo chọn ngẫu nhiên 6 học sinh để đi lao động. Hỏi có bao nhiêu cách chọn 6 học sinh từ lớp ấy sao cho trong đó có ít nhất 5 học sinh nam?
Cho hình chóp S.ABCD có đáy là hình thang đáy lớn AD. Gọi G là trọng tâm tam giác SCD. Thiết diện của hình chóp S.ABCD khi cắt bởi mp \(\left( {ABG} \right)\) là :
Cho phương trình \[\left( {2m + 1} \right){\cos ^2}2x - \left( {3m - 1} \right)\sin 2x - 3m + 1 = 0\] (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên của m để phương trình có đúng hai nghiệm phân biệt thuộc \[\left( { - \pi ;\pi } \right)\].
Có 5 cuốn sách toán khác nhau và 5 cuốn sách văn khác nhau. Có bao nhiêu cách sắp xếp chúng thành 1 hàng sao cho các cuốn sách cùng môn thì đứng kề nhau?
Cho hình chóp S.ABCD có đáy là hình thang đáy lớn AD. Gọi M là trung điểm cạnh SA. Gọi N là giao điểm của SD và mp \(\left( {BCM} \right)\). Khi đó khẳng định nào sau đây là sai?
Gieo một con xúc xắc cân đối, đồng chất hai lần. Gọi A là biến cố “tổng số chấm xuất hiện trên mặt của xúc sắc sau hai lần gieo bằng 8”. Khi đó xác suất của biến cố A là bao nhiêu?
Cho hai mặt phẳng \(\left( \alpha \right)\); \(\left( \beta \right)\) song song với nhau. Xét hai đường thẳng \(a \subset \left( \alpha \right)\); \(b \subset \left( \beta \right)\). Tìm mệnh đề đúng trong các mệnh đề sau?