Đáp án A
Phương pháp:
Hàm số \(\frac{1}{{f\left( x \right)}}\) xác định \( \Leftrightarrow f\left( x \right) \ne 0\).
Cách giải:
Hàm số xác định \( \Leftrightarrow \sin x + \cos x \ne 0\)
\( \Leftrightarrow \sin x \ne - \cos x \Leftrightarrow \tan x \ne - 1 \Leftrightarrow x \ne \frac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right)\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{4} + k\pi ,{\rm{ }}k \in \mathbb{Z}} \right\}\).
Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AD\) là đáy lớn thỏa mãn \(AD = 2BC\). Các điểm \(M,N\) lần lượt là trung điểm của các cạnh \(SA,\,\,SD\).
a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SBC} \right)\).
b) Mặt phẳng \(\left( {MCD} \right)\) cắt \(SB\) tại \(E\). Tính tỉ số \(\frac{{SE}}{{EB}}\).