Đáp án A
Phương pháp:
Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).
- Chọn lần lượt từng chữ số.
- Áp dụng quy tắc nhân.
Cách giải:
Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).
Chọn \(a\) có 6 cách.
Chọn \(b,c,d\) mỗi chữ số có 7 cách chọn.
Vậy có \({6.7^3} = 2058\) số.
Chú ý: Đề bài không yêu cầu các chữ số đôi một khác nhau.
Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AD\) là đáy lớn thỏa mãn \(AD = 2BC\). Các điểm \(M,N\) lần lượt là trung điểm của các cạnh \(SA,\,\,SD\).
a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SBC} \right)\).
b) Mặt phẳng \(\left( {MCD} \right)\) cắt \(SB\) tại \(E\). Tính tỉ số \(\frac{{SE}}{{EB}}\).