Đáp án C
Phương pháp:
+ Tính số phần tử của không gian mẫu.
+ Tính số phần tử của biến cố.
+ Tính xác suất của biến cố.
Cách giải:
Xếp ngẫu nhiên 6 chữ cái trên thành hàng ngang có \[\frac{{6!}}{{2!.2!}} = 180\] cách \[ \Rightarrow n\left( \Omega \right) = 180\].
Buộc các chữ cái H, H thành 1 buộc, S, S thành một buộc, khi đó ta cần xếp các chữ cái \[\left( {HH} \right),\,\,\left( {SS} \right),\,\,V,\,\,N\] thành 1 hàng ngang, có \[4! = 24\] cách.
Gọi A là biến cố: “2 chữ cái giống nhau đứng cạnh nhau” \[ \Rightarrow n\left( A \right) = 24\].
Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{24}}{{180}} = \frac{2}{{15}}\].
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.