2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Phương pháp:
Sử dụng biến cố đối.
Cách giải:
Lấy ngẫu nhiên 6 viên bi \[ \Rightarrow n\left( \Omega \right) = C_{21}^6 = 54264\].
Gọi A là biến cố: “Lấy được ít nhất 3 viên bi đỏ” \[ \Rightarrow \overline A \]: “Lấy được ít hơn 3 viên bi đỏ”.
TH1: 0 bi đỏ + 6 bi khác màu đỏ (xanh hoặc vàng).
Số cách chọn là: \[C_6^0.C_{15}^6 = 5005\] cách.
TH2: 1 bi đỏ + 5 bi khác màu đỏ (xanh hoặc vàng).
Số cách chọn là: \[C_6^1.C_{15}^5 = 18018\] cách.
TH3: 2 bi đỏ + 4 bi khác màu đỏ (xanh hoặc vàng).
Số cách chọn là: \[C_6^2.C_{15}^4 = 20475\] cách.
Áp dụng quy tắc cộng ta có \[n\left( {\overline A } \right) = 5005 + 18018 + 20475 = 43498\].
Vậy \[P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{43498}}{{54264}} = \frac{{769}}{{3876}}\].
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.