Cho n là số nguyên dương thỏa mãn . Xét khai triển . Hệ số lớn nhất P(x) là
A. 129024.
Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng. Giả sử mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hú họa mỗi câu hỏi một phương án trả lời. Xác suất để học sinh này nhận điểm dưới 1 là:
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến là đường thẳng a. Trong (P) lấy hai điểm A,Bnhưng không thuộc asao cho ABcắt atại Evà Slà một điểm không thuộc (P). Các đường thẳng SA,SBcắt (Q) tại C,D. Khẳng định nào đúng?
Cho tứ diện ABCD, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (ACD) và (GAB) là
Tìm số hạng không chứa x trong khai triển biết là số nguyên dương thỏa mãn .
Cho tứ giác lồi ABCD và một điểm Skhông thuộc mp(ABCD). Có nhiều nhất bao nhiêu mặt phẳng xác định bởi các điểm A,B,C,D,S ?
Một hộp đựng 12 bóng đèn, trong đó có 4 bóng đèn bị hỏng. Lấy ngẫu nhiên 3 bóng đèn ra khỏi hộp. Xác suất để trong ba bóng lấy ra có 2 bóng đèn bị hỏng là
Cho hình hộp ABCD.A'B'C'D' Người ta định nghĩa “Mặt chéo của hình hộp là mặt tạo bởi hai đường chéo của hình hộp đó”. Hình hộp ABCD.A'B'C'D' có số mặt chéo là
Tại một khu dân cư, tỉ lệ người mắc bệnh tim là 8%, mắc bệnh huyết áp là 9% và mắc cả hai bệnh đó là 5%. Chọn ngẫu nhiên một người sống tại vùng đó. Xác suất để người đó bị mắc ít nhất một trong hai bệnh tim hoặc huyết áp là
Tại một buổi lễ có 15 cặp vợ chồng tham dự. Mỗi ông bắt tay một lần với mọi người trừ vợ mình. Các bà không ai bắt tay với
nhau. Hỏi có bao nhiêu cái bắt tay?
Cho tứ diện ABCDvà M,Nlà các điểm trên cạnh AB,CDsao cho và Plà một điểm trên cạnh AC. Tỉ số diện tích tam giác MNPvà diện tích thiết diện của tứ diện cắt bởi mặt phẳng (MNP)bằng
Có 6 học sinh và 4 thầy giáo sẽ ngồi trên một ghế dài. Số cách xếp chỗ cho 10 người đó sao cho mỗi thầy giáo ngồi giữa hai học sinh là