Đáp án D
Phương pháp:
Dãy số \(\left( {{u_n}} \right)\) giảm nếu \(0 < \frac{{{u_{n + 1}}}}{{{u_n}}} < 1\) hoặc \({u_{n + 1}} - {u_n} < 0\).
Cách giải:
Đáp án A: \(\frac{{{u_{n + 1}}}}{{{u_n}}} < \frac{{{2^{n + 1}}}}{{{2^n}}} = 2 > 1\) nên dãy số tăng.
Đáp án B: \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) - 5 - 2n + 5 = 2 > 0\) nên dãy số tăng.
Đáp án C: Dãy số \( - 3;9; - 27;81;...\) không tăng không giảm.
Đáp án D: \({u_{n + 1}} - {u_n} = \frac{{1 - \left( {n + 1} \right)}}{{3\left( {n + 1} \right) + 2}} - \frac{{1 - n}}{{3n + 2}} = \frac{{ - n}}{{3n + 5}} - \frac{{1 - n}}{{3n + 2}} = \frac{{ - 3{n^2} - 2n - 3n - 5 + 3{n^2} + 5n}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}}\)
\( = \frac{{ - 5}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}} < 0\)
Do đó dãy số \(\left( {{u_n}} \right)\) giảm.
1. Trong một nhóm học sinh khối 11 tham gia hoạt động thiện nguyện gồm 3 học sinh nữ và 7 học sinh nam. Cần chọn ra 5 học sinh tham gia trong đợt thứ nhất. Tính xác suất để 5 học sinh được chọn không có quá 1 học sinh nữ.