Đáp án C
Phương pháp:
Sử dụng khai triển nhị thức Newton \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}.} \)
Cách giải:
Ta có: \(f\left( x \right) = {\left( {{x^2} + \frac{2}{x}} \right)^9} = \sum\limits_{k = 0}^9 {C_9^k{{\left( {{x^2}} \right)}^{9 - k}}{{\left( {\frac{2}{x}} \right)}^k} = \sum\limits_{k = 0}^9 {C_9^k{2^k}{x^{18 - 3k}}.} } \)
Số hạng tự do (số hạng không chứa x) ứng với \(18 - 3k = 0 \Leftrightarrow k = 6.\)
Vậy số hạng tự do trong khai triển trên là \(C_9^6{2^6} = 5376.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)