Đáp án B
Phương pháp:
\(A' = {D_I}\left( A \right) \Rightarrow \)I là trung điểm của \(AA'\).
Cách giải:
\(A' = {D_I}\left( A \right) \Rightarrow I\) là trung điểm của \(AA' \Rightarrow A'\left( {5;6} \right).\)
Chú ý: I là trung điểm của \(AA' \Rightarrow A' = 2I - A.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)