Đáp án C
Phương pháp:
Số đường chéo của đa giác đều là số đoạn nối 2 đỉnh bất kì không kề nhau của đa giác.
Cách giải:
Giả sử đa giác đều \(n\) cạnh, khi đó số đường chéo của đa giác đều là \(C_n^2 - n.\)
Vì đa giác đều có 20 đường chéo nên ta có \(C_n^2 - n = 20\)
\( \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} - n = 20 \Leftrightarrow \frac{{n\left( {n - 1} \right)}}{2} - n = 20\)
\( \Leftrightarrow {n^2} - n - 2n = 40 \Leftrightarrow {n^2} - 3n - 40 = 0 \Rightarrow n = 8\)
Vậy đa giác đều đó là bát giác đều
Chú ý: Các em có thể sử dụng công thức giải nhanh: số đường chéo của đa giác đều \(n\) cạnh là \(\frac{{{n^2} - 3n}}{2}.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)