Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

08/07/2024 68

Phương trình \({e^x} - {e^{\sqrt {2x - 1} }} = 1 - {x^2} + 2\sqrt {2x + 1} \) có nghiệm trong khoảng nào sau đây?

A. \(\left( {\frac{1}{2};1} \right)\)

B. \(\left( {2;\frac{5}{2}} \right)\)

Đáp án chính xác

C. \(\left( {1;\frac{3}{2}} \right)\)


D. \(\left( {\frac{3}{2};2} \right)\)


Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:

Sử dụng tính đơn điệu của hàm số.

Cách giải:

Điều kiện: \(x \ge - \frac{1}{2}\)

\({e^x} - {e^{\sqrt {2x + 1} }} = 1 - {x^2} + 2\sqrt {2x + 1} \Leftrightarrow 2x + 1 + 2\sqrt {2x + 1} + 1 + {e^{\sqrt {2x + 1} }} = {x^2} + 2x + 1 + {e^x}\)

\( \Leftrightarrow {\left( {\sqrt {2x + 1} + 1} \right)^2} + {e^{\sqrt {2x + 1} }} = {\left( {x + 1} \right)^2} + {e^x}\)

Xét hàm số \(y = {\left( {x + 1} \right)^2} + {e^x} \Rightarrow y' = 2\left( {x + 1} \right) + {e^x} = 2x + 1 + {e^x} + 1 > 0,\,\,\forall x \ge - \frac{1}{2}\)

\( \Rightarrow \) Hàm số đồng biến trên \(\left[ { - \frac{1}{2}; + \infty } \right)\)

Phương trình đã cho tương đương:

\(\sqrt {2x + 1} = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2x + 1 = {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} - 2x - 1 = 0\end{array} \right. \Leftrightarrow x = 1 + \sqrt 2 \in \left( {2;\frac{5}{2}} \right)\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m M. Tích M.m bằng

Xem đáp án » 26/06/2023 100

Câu 2:

Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng

Xem đáp án » 26/06/2023 90

Câu 3:

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3x + m\) có giá trị cực đại và giá trị cực tiểu trái dấu.

Xem đáp án » 26/06/2023 88

Câu 4:

Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 ,\,\,AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng

Xem đáp án » 26/06/2023 86

Câu 5:

Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng

Xem đáp án » 26/06/2023 84

Câu 6:

Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng?

Xem đáp án » 26/06/2023 82

Câu 7:

Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\)

Xem đáp án » 26/06/2023 82

Câu 8:

Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng

Xem đáp án » 26/06/2023 82

Câu 9:

Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:

Xem đáp án » 26/06/2023 80

Câu 10:

Cho hàm số \(y = {\log _2}x\). Xét các phát biểu

(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) .

(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.

(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.

Số phát biểu đúng là

Xem đáp án » 26/06/2023 77

Câu 11:

Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\)\(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

Cho các hàm số y = loga x, y = logb x và y = c^x (với a, b, c là các số dương khác 1) có đồ thị  (ảnh 1)

Xem đáp án » 26/06/2023 76

Câu 12:

Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\)

Xem đáp án » 26/06/2023 73

Câu 13:

Phương trình \({3.9^x} - {7.6^x} + {2.4^x} = 0\) có hai nghiệm \({x_1},\,{x_2}\). Tổng \({x_1} + {x_2}\) bằng

Xem đáp án » 26/06/2023 72

Câu 14:

Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng

Xem đáp án » 26/06/2023 71

Câu 15:

Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng

Xem đáp án » 26/06/2023 70

Câu hỏi mới nhất

Xem thêm »
Xem thêm »