Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

18/07/2024 75

Phương trình \({3.9^x} - {7.6^x} + {2.4^x} = 0\) có hai nghiệm \({x_1},\,{x_2}\). Tổng \({x_1} + {x_2}\) bằng

A. 1

B. \({\log _{\frac{3}{2}}}\frac{7}{3}\)

C. \(\frac{7}{3}\)


D. –1


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Chia cả hai vế cho \({4^x}\), đặt \({\left( {\frac{3}{2}} \right)^x} = t\). Giải phương trình tìm t, từ đó tìm x và tổng \({x_1} + {x_2}\)

Cách giải:

\({3.9^x} - {7.6^x} + {2.4^x} = 0 \Leftrightarrow 3.{\left( {\frac{9}{4}} \right)^x} - 7{\left( {\frac{3}{2}} \right)^x} + 2 = 0\)

Đặt \({\left( {\frac{3}{2}} \right)^x} = t\). Phương trình trở thành \(\begin{array}{l}3{t^2} - 7t + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = \frac{1}{3}\end{array} \right. \Rightarrow \left[ \begin{array}{l}{\left( {\frac{3}{2}} \right)^x} = 2\\{\left( {\frac{3}{2}} \right)^x} = \frac{1}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {\log _{\frac{3}{2}}}2\\x = {\log _{\frac{3}{2}}}\frac{1}{3}\end{array} \right.\\\end{array}\)

Tổng hai nghiệm \({x_1} + {x_2} = {\log _{\frac{3}{2}}}2 + {\log _{\frac{3}{2}}}\frac{1}{3} = {\log _{\frac{3}{2}}}\left( {2.\frac{1}{3}} \right) = {\log _{\frac{3}{2}}}\frac{2}{3} = - 1\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m M. Tích M.m bằng

Xem đáp án » 26/06/2023 111

Câu 2:

Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng

Xem đáp án » 26/06/2023 97

Câu 3:

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3x + m\) có giá trị cực đại và giá trị cực tiểu trái dấu.

Xem đáp án » 26/06/2023 94

Câu 4:

Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 ,\,\,AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng

Xem đáp án » 26/06/2023 93

Câu 5:

Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng

Xem đáp án » 26/06/2023 92

Câu 6:

Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng

Xem đáp án » 26/06/2023 90

Câu 7:

Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng?

Xem đáp án » 26/06/2023 90

Câu 8:

Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\)

Xem đáp án » 26/06/2023 89

Câu 9:

Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:

Xem đáp án » 26/06/2023 88

Câu 10:

Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\)\(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

Cho các hàm số y = loga x, y = logb x và y = c^x (với a, b, c là các số dương khác 1) có đồ thị  (ảnh 1)

Xem đáp án » 26/06/2023 84

Câu 11:

Cho hàm số \(y = {\log _2}x\). Xét các phát biểu

(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) .

(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.

(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.

Số phát biểu đúng là

Xem đáp án » 26/06/2023 84

Câu 12:

Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\)

Xem đáp án » 26/06/2023 79

Câu 13:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA \bot \left( {ABCD} \right)\)\(SA = a\). Gọi E là trung điểm của cạnh AB. Diện tích mặt cầu ngoại tiếp hình chóp bằng .SBCE

Xem đáp án » 26/06/2023 79

Câu 14:

Cho phương trình \({\log _5}\left( {{x^2} + x + 1} \right) = 1\). Khẳng định nào sau đây đúng?

Xem đáp án » 26/06/2023 78

Câu 15:

Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng

Xem đáp án » 26/06/2023 77

Câu hỏi mới nhất

Xem thêm »
Xem thêm »