Cho hàm số \(y = \frac{{2x + 3}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Có bao nhiêu giá trị thực của tham số m để đường thẳng \(y = 2x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt mà tiếp tuyến của t\(\left( C \right)\) ại hai điểm đó song song với nhau?
D. 1
Đáp án D
Cách giải:
Xét phương trình hoành độ giao điểm của \(\left( C \right)\) và đường thẳng \(y = 2x + m\):
\(\frac{{2x + 3}}{{x - 2}} = 2x + m,\,\,\left( {x \ne 2} \right) \Leftrightarrow 2x + 3 = \left( {2x + m} \right)\left( {x - 2} \right) \Leftrightarrow 2{x^2} + \left( {m - 6} \right)x - 2m - 3 = 0\left( * \right)\)
Dễ dàng kiểm tra được \(x = 2\) không phải nghiệm của phương trình (*) với mọi m
Để phương trình (*) có 2 nghiệm phân biệt \({x_1},\,{x_2}\) thì \(\Delta > 0 \Leftrightarrow {\left( {m - 6} \right)^2} + 8\left( {2m + 3} \right) > 0 \Leftrightarrow {m^2} + 4m + 60 > 0\), luôn đúng
\(y = \frac{{2x + 3}}{{x - 2}} \Rightarrow y = - \frac{7}{{{{\left( {x - 2} \right)}^2}}}\)
Tiếp tuyến của \(\left( C \right)\) tại hai điểm giao song song với nhau
\( \Leftrightarrow - \frac{7}{{{{\left( {{x_1} - 2} \right)}^2}}} = - \frac{7}{{{{\left( {{x_1} - 2} \right)}^2}}} \Leftrightarrow {\left( {{x_1} - 2} \right)^2} = {\left( {{x_2} - 2} \right)^2} \Leftrightarrow \left[ \begin{array}{l}{x_1} = {x_2}\\{x_1} + {x_2} = 4\end{array} \right. \Leftrightarrow {x_1} + {x_2} = 4\)
Theo Vi – ét, ta có: \({x_1} + {x_2} = - \frac{{m - 6}}{2} \Rightarrow - \frac{{m - 6}}{2} = 4 \Leftrightarrow m - 6 = - 8 \Leftrightarrow m = - 2\)
Vậy, có 1 giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng
Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 ,\,\,AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng
Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng
Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng?
Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng
Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:
Cho hàm số \(y = {\log _2}x\). Xét các phát biểu
(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) .
(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.
(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.
Số phát biểu đúng là
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\)
Phương trình \({3.9^x} - {7.6^x} + {2.4^x} = 0\) có hai nghiệm \({x_1},\,{x_2}\). Tổng \({x_1} + {x_2}\) bằng
Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng
Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng