Lời giải
Chọn D
TXĐ : \(D = \mathbb{R}\backslash \left\{ m \right\}\).
Ta có \(y' = \frac{{ - {m^2} + 1}}{{{{\left( {x - m} \right)}^2}}}\).
Hàm số đồng biến trên khoảng \(\left( {1;3} \right)\) khi và chỉ khi
\(y' > 0,\forall x \in \left( {1;3} \right) \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\x - m \ne 0,x \in \left( {1;3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\m \notin \left( {1;3} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\\left[ \begin{array}{l}m \le 1\\m \ge 3\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 1\\\left[ \begin{array}{l}m \le 1\\m \ge 3\end{array} \right.\end{array} \right. \Leftrightarrow - 1 < m < 1\).