Lời giải
Chọn D
Vì \(f'\left( x \right) = - {x^2} - 1 < 0\), \(\forall x \in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\).
Vì thế:
Do \(1 < 2\) nên \(f\left( 1 \right) > f\left( 2 \right)\). Suy ra A sai.
Do \(3 > 2\) nên \(f\left( 3 \right) < f\left( 2 \right)\). Suy ra B sai.
Do \(1 > 0\) nên \(f\left( 1 \right) < f\left( 0 \right)\). Suy ra C sai.
Do \(0 > - 1\) nên \(f\left( 0 \right) < f\left( { - 1} \right)\). Suy ra D đúng.
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?