Cho hàm số \(f\left( x \right)\) bảng biến thiên sau đây
Tìm \(m\) để phương trình \(f\left( x \right) = 2m + 1\) có 3 nghiệm phân biệt.
Lời giải
Chọn D
Phương trình \(f\left( x \right) = 2m + 1\) là phương trình hoành độ giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2m + 1\).
Dựa vào bảng biến thiên ta có phương trình \(f\left( x \right) = 2m + 1\) có 3 điểm phân biệt khi
\( - 1 < 2m + 1 < 3\) \( \Leftrightarrow - 2 < 2m < 2 \Leftrightarrow - 1 < m < 1\).
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?