Lời giải
Chọn C
\(y' = \frac{{{m^4} - 16}}{{{{\left( {x + m} \right)}^2}}} = \frac{{\left( {{m^2} - 4} \right)\left( {{m^2} + 4} \right)}}{{{{\left( {x + m} \right)}^2}}},\forall x \ne - m\).
Yêu cầu bài toán \( \Leftrightarrow y' > 0;\forall x \in \left( {5; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4 > 0\\ - m \notin \left( {5; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m < - 2\end{array} \right.\\m \ge - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m > 2\\ - 5 \le m < - 2\end{array} \right.\).
Kết hợp với \(m \in {\mathbb{Z}^ - } \Rightarrow m \in \left\{ { - 5; - 4; - 3} \right\}\)là các giá trị cần tìm.
Vậy tập \(S\)có \(3\)phần tử.
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?