Tìm tất cả các giá trị của tham số m để bất phương trình \(m\left( {x - 1} \right) < {\left( {x + 1} \right)^2}\) nghiệm đúng với mọi \(x \in \left( {1;4} \right]\).
D. \(m \le \frac{{25}}{3}\)
Đáp án C
Phương pháp:
+) Biến đổi phương trình về dạng \(m < f\left( x \right)\,\,\forall x \in \left( {1;4} \right] \Rightarrow m < \mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right)\)
+) Khảo sát hàm số \(y = f\left( x \right)\) và tìm \(\mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right)\)
Cách giải:
\(\forall x \in \left( {1;4} \right] \Rightarrow x - 1 > 0 \Rightarrow m < \frac{{{{\left( {x + 1} \right)}^2}}}{{x - 1}}\,\,\forall x \in \left( {1;4} \right]\)
Đặt \(f\left( x \right) = \frac{{{{\left( {x + 1} \right)}^2}}}{{x - 1}}\) ta có \(m < f\left( x \right)\,\,\forall x \in \left( {1;4} \right] \Rightarrow m < \mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right)\)
Ta có \(f'\left( x \right) = \frac{{2\left( {x + 1} \right)\left( {x - 1} \right) - {{\left( {x + 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2{x^2} - 2 - {x^2} - 2x - 1}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\)
BBT:
Dựa vào BBT ta có: \(\mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right) = f\left( 3 \right) = 8 \Rightarrow m < 8\)
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD.
Tìm tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{x\sqrt {4 - {x^2}} }}{{{x^2} - 3x + 2}}\)
Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Thể tích V của hình chóp S.ABCD.
Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Tìm phương trình các đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {4{x^2} + 1} + 2x}}{x}\)
Một hình nón có chiều cao bằng \(\sqrt 5 \), đường kính đáy bằng 6. Tính thể tích V của khối nón đó?
Cho \(\left( {{C_m}} \right):y = 2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4\). Gọi T là tập các giá trị của m thỏa mãn \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox, tính tổng S các phần tử của T.
Cho hình chóp S.ABCD, M là trung điểm của SA. Gọi \(\left( \alpha \right)\) là mặt phẳng qua M và song song với mặt phẳng (ABCD). Mặt phẳng \(\left( \alpha \right)\) chia khối chóp S.ABCD thành hai khối gồm khối chứa điểm S có thể tích \({V_1}\) và khối chứa điểm A có thể tích \({V_2}\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)?
Thiết diện qua trục của một hình nón là một tam giác vuông cân có diện tích là 50. Tính bán kính R của hình nón đó?
Tìm m để phương trình \({\log _2}\sqrt {{x^2} - 3x + 2} + {\log _{\frac{1}{2}}}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \) có nghiệm?
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.