Thứ bảy, 04/01/2025
IMG-LOGO

Câu hỏi:

09/06/2024 45

Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?

A. 5

B. 4

C. 3

Đáp án chính xác


D. 2


Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

Đặt \(t = {2^x}\), đưa về phương trình bậc hai ẩn t. Tìm điều kiện để phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt.

Cách giải:

\({2^{2x + 1}} - {2^{x + 3}} - 2m = 0 \Leftrightarrow {2.2^{2x}} - {8.2^x} - 2m \Leftrightarrow {2^{2x}} - {4.2^x} - m = 0\)

Đặt \(t = {2^x}\,\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 4t - m = 0\,\,\left( * \right)\)

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm dương phân biệt \( \Rightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 + m > 0\\4 > 0\\ - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 4\\m < 0\end{array} \right. \Leftrightarrow - 4 < m < 0\)

\(m \in Z \Rightarrow m \in \left\{ { - 3; - 2; - 1} \right\}\)

Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD.

Xem đáp án » 28/06/2023 103

Câu 2:

Tìm tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{x\sqrt {4 - {x^2}} }}{{{x^2} - 3x + 2}}\)

Xem đáp án » 28/06/2023 80

Câu 3:

Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Thể tích V của hình chóp S.ABCD.

Xem đáp án » 28/06/2023 76

Câu 4:

Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.

Xem đáp án » 28/06/2023 76

Câu 5:

Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)

Xem đáp án » 28/06/2023 76

Câu 6:

Tính thể tích V của khối lập phương có cạnh bằng 2cm.

Xem đáp án » 28/06/2023 75

Câu 7:

Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)

Xem đáp án » 28/06/2023 70

Câu 8:

Tìm phương trình các đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {4{x^2} + 1} + 2x}}{x}\)

Xem đáp án » 28/06/2023 65

Câu 9:

Một hình nón có chiều cao bằng \(\sqrt 5 \), đường kính đáy bằng 6. Tính thể tích V của khối nón đó?

Xem đáp án » 28/06/2023 64

Câu 10:

Cho \(\left( {{C_m}} \right):y = 2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4\). Gọi T là tập các giá trị của m thỏa mãn \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox, tính tổng S các phần tử của T.

Xem đáp án » 28/06/2023 63

Câu 11:

Cho hình chóp S.ABCD, M là trung điểm của SA. Gọi \(\left( \alpha \right)\) là mặt phẳng qua M và song song với mặt phẳng (ABCD). Mặt phẳng \(\left( \alpha \right)\) chia khối chóp S.ABCD thành hai khối gồm khối chứa điểm S có thể tích \({V_1}\) và khối chứa điểm A có thể tích \({V_2}\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)?

Xem đáp án » 28/06/2023 62

Câu 12:

Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.

Xem đáp án » 28/06/2023 62

Câu 13:

Tìm m để phương trình \({\log _2}\sqrt {{x^2} - 3x + 2} + {\log _{\frac{1}{2}}}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \) có nghiệm?

Xem đáp án » 28/06/2023 61

Câu 14:

Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)

Xem đáp án » 28/06/2023 61

Câu 15:

Thiết diện qua trục của một hình nón là một tam giác vuông cân có diện tích là 50. Tính bán kính R của hình nón đó?

Xem đáp án » 28/06/2023 60

Câu hỏi mới nhất

Xem thêm »
Xem thêm »