Thứ bảy, 04/01/2025
IMG-LOGO

Câu hỏi:

18/07/2024 54

Tìm giá trị nhỏ nhất (nếu có) của hàm số \(y = {\sin ^3}x - 3{\sin ^2}x - 1\)

A. Hàm số không có giá trị nhỏ nhất


B. \(\min y = - 3\)


C. \(\min y = - 1\) 


D. \(\min y = - 5\)


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

+) Đặt \(t = \sin x\left( {t \in \left[ { - 1;1} \right]} \right)\)

+) Sử dụng phương pháp tìm GTNN, GTLN của hàm số trên \(\left[ { - 1;1} \right]\)

Cách giải:

Đặt \(t = \sin x\left( {t \in \left[ { - 1;1} \right]} \right)\), khi đó \(y = {t^3} - 3{t^2} - 1\)

\(y' = 3{t^2} - 6t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0 \in \left[ { - 1;1} \right]\\t = 2 \notin \left[ { - 1;1} \right]\end{array} \right.\)

\(y\left( { - 1} \right) = - 5;\,\,\,y\left( 1 \right) = - 3;\,\,\,y\left( 0 \right) = - 1 \Rightarrow \min y = - 5\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD.

Xem đáp án » 28/06/2023 104

Câu 2:

Tìm tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{x\sqrt {4 - {x^2}} }}{{{x^2} - 3x + 2}}\)

Xem đáp án » 28/06/2023 80

Câu 3:

Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Thể tích V của hình chóp S.ABCD.

Xem đáp án » 28/06/2023 76

Câu 4:

Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.

Xem đáp án » 28/06/2023 76

Câu 5:

Tính thể tích V của khối lập phương có cạnh bằng 2cm.

Xem đáp án » 28/06/2023 76

Câu 6:

Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)

Xem đáp án » 28/06/2023 76

Câu 7:

Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)

Xem đáp án » 28/06/2023 70

Câu 8:

Tìm phương trình các đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {4{x^2} + 1} + 2x}}{x}\)

Xem đáp án » 28/06/2023 65

Câu 9:

Một hình nón có chiều cao bằng \(\sqrt 5 \), đường kính đáy bằng 6. Tính thể tích V của khối nón đó?

Xem đáp án » 28/06/2023 65

Câu 10:

Cho \(\left( {{C_m}} \right):y = 2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4\). Gọi T là tập các giá trị của m thỏa mãn \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox, tính tổng S các phần tử của T.

Xem đáp án » 28/06/2023 63

Câu 11:

Cho hình chóp S.ABCD, M là trung điểm của SA. Gọi \(\left( \alpha \right)\) là mặt phẳng qua M và song song với mặt phẳng (ABCD). Mặt phẳng \(\left( \alpha \right)\) chia khối chóp S.ABCD thành hai khối gồm khối chứa điểm S có thể tích \({V_1}\) và khối chứa điểm A có thể tích \({V_2}\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)?

Xem đáp án » 28/06/2023 62

Câu 12:

Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.

Xem đáp án » 28/06/2023 62

Câu 13:

Thiết diện qua trục của một hình nón là một tam giác vuông cân có diện tích là 50. Tính bán kính R của hình nón đó?

Xem đáp án » 28/06/2023 61

Câu 14:

Tìm m để phương trình \({\log _2}\sqrt {{x^2} - 3x + 2} + {\log _{\frac{1}{2}}}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \) có nghiệm?

Xem đáp án » 28/06/2023 61

Câu 15:

Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)

Xem đáp án » 28/06/2023 61

Câu hỏi mới nhất

Xem thêm »
Xem thêm »