IMG-LOGO

Câu hỏi:

21/07/2024 60

Cho phương trình x²(m2)x + m5 = 0 (1) trong đó m là tham số. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

Trả lời:

verified Giải bởi Vietjack

(m2)x + m5 = 0 (1)

Ta có: Δ=m224m5=m28m+24  .

Để (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m khi

Δ0m28m+240

m42+80 (luôn đúng, với mọi m).

Vậy phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O và điểm A nằm bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).

a) Chứng minh: BD ^ AC và AB2 = AD.AC.

Xem đáp án » 08/07/2023 355

Câu 2:

Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC. Chứng minh PC cắt AH tại trung điểm I của AH.

Xem đáp án » 08/07/2023 284

Câu 3:

Từ điểm P nằm ngoài đường tròn tâm O bán kính R, kẻ hai tiếp tuyến PA, PB tới đường tròn (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A tới đường kính BC, đoạn thẳng PC cắt AH tại E.

a) Chứng minh bốn điểm P, A, O, B cùng nằm trên một đường tròn.

Xem đáp án » 08/07/2023 179

Câu 4:

Cho đường tròn (O) tâm O đường kính AB lấy điểm C thuộc đường tròn (O), với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn (O) tại điểm C cắt tia OI tại điểm D.

a) Chứng minh OI // BC.

Xem đáp án » 08/07/2023 139

Câu 5:

Tìm số tự nhiên có 3 chữ số biết rằng nếu viết thêm 1 chữ số 0 vào giữa chữ số hàng trăm và hàng chục của số đó ta được số mới gấp 6 lần số phải tìm.

Xem đáp án » 08/07/2023 122

Câu 6:

Cho đường tròn (O). Từ một điểm M ở ngoài (O), vẽ hai tiếp tuyến MA và MB sao cho AMB^=60° . Biết chu vi tam giác MAB là 24 cm, tính độ dài bán kính đường tròn.

Xem đáp án » 08/07/2023 117

Câu 7:

d) Tia OA cắt đường tròn (O) tại F. Chứng minh FA.CH = HF.CA.

Xem đáp án » 08/07/2023 107

Câu 8:

Cho hình lục giác đều ABCDEF tâm O. Chứng minh:

OA+OB+OC+OD+OE+OF=0.

Xem đáp án » 08/07/2023 103

Câu 9:

b) Chứng minh OB.AH = CH.PB và E là trung điểm của AH.

Xem đáp án » 08/07/2023 103

Câu 10:

Cho hình thoi ABCD, có A^=60° . Gọi E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh 5 điểm E, F, G, H, B, D cùng thuộc một đường tròn

Xem đáp án » 08/07/2023 100

Câu 11:

Cho đường thẳng (d): y = (m + 1)x + 2m − 3. Chứng minh rằng với mọi m đường thẳng (d) luôn luôn đi qua một điểm cố định. Xác định điểm cố định đó.

Xem đáp án » 08/07/2023 100

Câu 12:

Xác định parabol y = ax+ bx + c, (a0), biết rằng đỉnh của parabol đó có tung độ bằng −25, đồng thời parabol đó cắt trục hoành tại hai điểm A(−4; 0) và B(6; 0).

Xem đáp án » 08/07/2023 99

Câu 13:

Cho tam giác ABC vuông cân đỉnh A. Qua A kẻ đường thẳng d cắt BC. Vẽ BM, CN cùng vuông góc với d. Chứng minh: ∆BAM = ∆CAN.

Xem đáp án » 08/07/2023 99

Câu 14:

Cho biểu thức P=xx+2x+1:xx+1x41x .

a) Rút gọn P.

Xem đáp án » 08/07/2023 99

Câu 15:

Từ các chữ số 1, 2 , 3, 4, 5, 7, 8, 9 có thể lập được bao nhiêu số tự nhiên, mỗi số gồm 6 chữ số khác nhau và tổng các chữ số hàng chục, hàng trăm, hàng nghìn bằng 8.

Xem đáp án » 08/07/2023 98

Câu hỏi mới nhất

Xem thêm »
Xem thêm »