IMG-LOGO

Câu hỏi:

28/06/2024 55

Tính GTLN của diện tích 1 tam giác biết 3 trong 2 cạnh của nó là 5 và 8.

Trả lời:

verified Giải bởi Vietjack

Giả sử AB = 5, AC = 8. Xét trường hợp \(\widehat {BAC}\) nhọn:

Áp dụng công thức sau: \({S_{ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC}\) với \(\widehat {BAC}\) nhọn.

Do \(\sin \widehat {BAC} < 1\)nên \({S_{ABC}} < \frac{{AB.AC}}{2}\)

Xét trường hợp \(\widehat {BAC}\)tù. Có công thức sau đây: \({S_{ABC}} = \frac{1}{2}AB.AC.\sin \left( {180^\circ - \widehat {BAC}} \right)\)

Lập luận tương tự vẫn có \({S_{ABC}} < \frac{{AB.AC}}{2}\)

Trường hợp \(\widehat {BAC}\) vuông ta có \({S_{ABC}} = \frac{{AB.AC}}{2}\)

Vậy GTLN của \({S_{ABC}}\)\(\frac{{AB.AC}}{2} = 20.\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang ABCD (AB // CD) có AD = CD và AC BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.

a. Chứng minh tứ giác AECD là hình thoi.

b. Chứng minh tứ giác BEDC là hình bình hành.

c. Chứng minh ∆CEB cân.

Xem đáp án » 09/07/2023 131

Câu 2:

Cho hình thang cân ABCD có đáy lớn AB = 30 cm, đáy nhỏ CD = 10 cm và \(\widehat A\)= 60°. Tính cạnh BC. Gọi M, N lần lượt là trung điểm của AB và CD. Tính MN?

Xem đáp án » 09/07/2023 102

Câu 3:

∆ABC có 2 đường trung tuyến BM và CN vuông góc với nhau. Tìm hệ thức thể hiện quan hệ 3 cạnh của tam giác.

Xem đáp án » 09/07/2023 94

Câu 4:

Chứng minh cosa(1 + cosa)(tana – sina) = sin3a.

Xem đáp án » 09/07/2023 91

Câu 5:

Tính tổng: \({\sin ^2}2^\circ + {\sin ^2}4^\circ + {\sin ^2}6^\circ + ... + {\sin ^2}84^\circ + {\sin ^2}86^\circ + {\sin ^2}88^\circ \).

Xem đáp án » 09/07/2023 90

Câu 6:

Cho ∆ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau ở D. Chứng minh:

a. ∆BDC cân.

b. AD là tia phân giác của góc A và DA là tia phân giác của \(\widehat D\).

c. AD BC và AD đi qua trung điểm của BC.

Xem đáp án » 09/07/2023 89

Câu 7:

Cho nửa đường tròn tâm O đường kính AB, tiếp tuyến Ax. Gọi C là 1 điểm trên nửa đường tròn. Tia phân giác của \(\widehat {CAx}\) cắt nửa đường tròn tại E, AE và BC cắt nhau tại K. Chứng minh:

a. ABK cân tại B.

b. Gọi I là giao điểm của AC và BE. Chứng minh: KI // Ax.

c. Chứng minh: OE // BC.

d. BI cắt Ax tại F. Chứng minh: tứ giác AIKF là hình thoi.

Xem đáp án » 09/07/2023 86

Câu 8:

Cho x ℕ. Hãy chứng minh \({x^2} + 1\)không chia hết cho 4.

Xem đáp án » 09/07/2023 82

Câu 9:

Chứng minh rằng với mọi tập hợp A, B, C: A ∩ (B C) = (A ∩ B) (A ∩ C).

Xem đáp án » 09/07/2023 79

Câu 10:

Phân tích đa thức sau thành nhân tử: \(\frac{2}{5}{x^2} + 5{x^3} + {x^2}y\).

Xem đáp án » 09/07/2023 79

Câu 11:

Cho n ℕ, chứng minh rằng \({n^2} + n + 1\) không chia hết cho 4 và không chia hết cho 5.

Xem đáp án » 09/07/2023 78

Câu 12:

Hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ ,\)AB = AD = 2 cm, DC = 4 cm. Tính các góc của hình thang ?

Xem đáp án » 09/07/2023 77

Câu 13:

Giá trị của

\(M = {\cos ^2}15 + {\cos ^2}25 + {\cos ^2}35 + {\cos ^2}45 + {\cos ^2}105 + {\cos ^2}115 + {\cos ^2}125\)là ?

Xem đáp án » 09/07/2023 76

Câu 14:

Tính đạo hàm của hàm số \(y = \left( {{x^2} + 2x} \right){e^{ - x}}\)?

Xem đáp án » 09/07/2023 71

Câu 15:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của (MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD).

Xem đáp án » 09/07/2023 71

Câu hỏi mới nhất

Xem thêm »
Xem thêm »