Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 47

Gọi G là trọng tâm tam giác ABC và I, J thỏa mãn \(\overrightarrow {IA} = 2\overrightarrow {IB} ,3\overrightarrow {J{\rm{A}}} + 2\overrightarrow {JC} = \overrightarrow 0 \)

a) Phân tích \(\overrightarrow {{\rm{IJ}}} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \)

b) Chứng minh rằng IJ qua G.

Trả lời:

verified Giải bởi Vietjack

a) Ta có

\(\overrightarrow {IA} = 2\overrightarrow {IB} \Leftrightarrow \overrightarrow {IA} - 2\overrightarrow {IB} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} - 2\overrightarrow {IA} - 2\overrightarrow {AB} = \overrightarrow 0 \Leftrightarrow \overrightarrow {AI} = 2\overrightarrow {AB} \)

\(3\overrightarrow {J{\rm{A}}} + 2\overrightarrow {JC} = \overrightarrow 0 \Leftrightarrow 3\overrightarrow {J{\rm{A}}} + 2\overrightarrow {JA} + 2\overrightarrow {AC} = \overrightarrow 0 \Leftrightarrow 5\overrightarrow {J{\rm{A}}} + 2\overrightarrow {AC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {AJ} = \frac{2}{5}\overrightarrow {AC} \)

Ta có \(\overrightarrow {IJ} = \overrightarrow {{\rm{AJ}}} - \overrightarrow {AI} = \frac{2}{5}\overrightarrow {AC} - 2\overrightarrow {AB} = - 2\left( {\overrightarrow {AB} - \frac{1}{5}\overrightarrow {AC} } \right)\)                (1)

b) Ta có

\(\overrightarrow {JG} = \overrightarrow {{\rm{AG}}} - \overrightarrow {AJ} = \overrightarrow {AG} - \frac{2}{5}\overrightarrow {AC} = \frac{2}{3}\overrightarrow {AM} - \frac{2}{5}\overrightarrow {AC} \) (M là trung điểm của BC)

\(\frac{{\overrightarrow {AB} + \overrightarrow {AC} }}{3} - \frac{2}{5}\overrightarrow {AC} = \frac{1}{3}\overrightarrow {AB} - \frac{1}{{15}}\overrightarrow {AC} = \frac{1}{3}\left( {\overrightarrow {AB} - \frac{1}{5}\overrightarrow {AC} } \right)\)                    (2)

Từ (1) và (2) suy ra \(\overrightarrow {{\rm{IJ}}} = - 6\overrightarrow {JG} \)

Do đó I, J, G thẳng hàng

Vậy IJ qua G.           

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.

a) Chứng minh DE = BF.

b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF}\) = 90°

c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.

d) Chứng minh A, H, K thẳng hàng.

Xem đáp án » 11/07/2023 110

Câu 2:

Cho tam giác ABC có AB = 2, BC = 4, CA = 3.

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA

b) Gọi G là trọng tâm của ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)

c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)

d) Gọi AD là phân giác trong của góc BAC (D BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.

Xem đáp án » 11/07/2023 94

Câu 3:

Cho đoạn thẳng AB có trung điểm I. M là điểm tùy ý không nằm trên đường thẳng AB. Trên MI kéo dài, lấy một điểm N sao cho IN = MI.

a) Chứng minh: \(\overrightarrow {BN} - \overrightarrow {BA} = \overrightarrow {MB} \)

b) Tìm các điểm D, C sao cho \(\overrightarrow {NA} + \overrightarrow {NI} = \overrightarrow {N{\rm{D}}} ;\overrightarrow {NM} - \overrightarrow {BN} = \overrightarrow {NC} \).

Xem đáp án » 11/07/2023 93

Câu 4:

Cho (O;R) đường kính AD, dây AB , qua B kẻ dây BC vuông góc AD tại H . Tính bán kính R của đường tròn biết AB = 10 cm, BC = 12 cm.

Xem đáp án » 11/07/2023 83

Câu 5:

Một chiếc cổng hình parabol dạng y = \( - \frac{1}{2}{x^2}\) có chiều rộng d = 8m. Hãy tính chiều cao h của cổng (Xem hình minh họa bên cạnh)

Một chiếc cổng hình parabol dạng y = -1/2 x^2 có chiều rộng d = 8m (ảnh 1)

Xem đáp án » 11/07/2023 75

Câu 6:

Một số nếu giảm xuống 3 lần rồi bớt đi 14,6 thì được kết quả là 30,4. Tìm số đó.

Xem đáp án » 11/07/2023 75

Câu 7:

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {E{\rm{A}}} = \overrightarrow {CB} + \overrightarrow {E{\rm{D}}} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} = \overrightarrow {A{\rm{E}}} - \overrightarrow {DB} + \overrightarrow {CB} \).

Xem đáp án » 11/07/2023 74

Câu 8:

Cho tứ giác ABCD. Tìm điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = \overrightarrow 0 \)

Xem đáp án » 11/07/2023 72

Câu 9:

Tìm x, y biết x : y : z = 3 : 8 : 5 và 3x + y  2z = 14.

Xem đáp án » 11/07/2023 70

Câu 10:

Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.

Xem đáp án » 11/07/2023 69

Câu 11:

Xác định đường thẳng đi qua A(4 ; 3), cắt trục tung tại điểm có tung độ là 1 số nguyên dương, cắt trục hoành tại 1 điểm có hoành độ là 1 số nguyên tố.

Xem đáp án » 11/07/2023 68

Câu 12:

Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)

Xem đáp án » 11/07/2023 66

Câu 13:

Cho 4 điểm A, B, C, D bất kì. Chứng minh \(\overrightarrow {AB} + \overrightarrow {C{\rm{D}}} = \overrightarrow {A{\rm{D}}} + \overrightarrow {CB} \).

Xem đáp án » 11/07/2023 62

Câu 14:

Tìm x, y, z biết \(\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z - 5}}{6}\) và 5z – 3x – 4y = 50.

Xem đáp án » 11/07/2023 62

Câu 15:

Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường hợp này là tứ giác có hình ảnh cánh diều)

a) Chứng minh AC là đường trung trực của BD

b) Tính góc B và góc D (biết \(\widehat A = 100^\circ ,\widehat C = 60^\circ \)).

Xem đáp án » 11/07/2023 60

Câu hỏi mới nhất

Xem thêm »
Xem thêm »