Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 76

Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).

a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh: OA BC tại H và OD2 = OH . OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA.

c) Chứng minh CB trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN.

Trả lời:

verified Giải bởi Vietjack

Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn  (ảnh 1)

a) Vì AB, AC là tiếp tuyến của (O) nên AB OB, AC OC

Do đó \(\widehat {ABO} = \widehat {ACO} = 90^\circ \)

Suy ra A, B, O, C cùng thuộc đường tròn đường kính AO.

b) Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A, suy ra AB = AC

Hay A thuộc trung trực của BC

Mà O thuộc trung trực của BC (vì OB = OC)

Suy ra AO là trung trực của BC

Do đó AO BC.

Xét tam giác ABO vuông tại B có BH AO

Suy ra OB2 = OH . OA (hệ thức lượng trong tam giác vuông)

Mà OB = OD (cùng là bán kính của (O)).

Suy ra OD2 = OH . OA.

Do đó \(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\)

Xét tam giác OHD và tam giác ODA có

\(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\) (Chứng minh trên)

\(\widehat {DOA}\) là góc chung

Suy ra  (c.g.c)

c) Ta có OB2 = OH . OA (chứng minh câu b)

Mà OB = OE, suy ra OE2 = OH . OA

Do đó \(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\)

Xét tam giác OHE và tam giác OEA có

\(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\) (Chứng minh trên)

\(\widehat {EOA}\) là góc chung

Suy ra  (c.g.c)

Do đó \(\widehat {EHO} = \widehat {A{\rm{E}}O}\) (hai góc tương ứng)  

Mặt khác \(\widehat {DEO} = \widehat {EDO}\) (vì tam giác ODE cân tại O)

Suy ra \(\widehat {EHO} = \widehat {{\rm{ED}}O}\)

Xét tứ giác HDEO có \(\widehat {EHO} = \widehat {{\rm{ED}}O}\), mà hai góc này cùng nhìn cạnh EO trong tứ giác

Suy ra tứ giác HDEO nội tiếp

Do đó \(\widehat {DHA} = \widehat {AEO} = \widehat {OHE}\)

Suy ra \(\widehat {DHB} = \widehat {BHE}\) nên \(HB\) là tia phân giác của góc DHE.

Hay CB trùng với tia phân giác của góc DHE.

d) Gọi G là giao điểm của BC và AE

Do HG là tia phân giác của \(\widehat {DHE}\)nên \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{HD}}{{HE}}\) (1)

Mà HA HG

Suy ra HA là tia phân giác ngoài của tam giác HED

Do đó \(\frac{{A{\rm{D}}}}{{A{\rm{E}}}} = \frac{{H{\rm{D}}}}{{HE}}\) (2)

Từ (1) và (2) suy ra \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\left( { = \frac{{H{\rm{D}}}}{{HE}}} \right)\) (3)

Xét DABE có DM // BE nên \(\frac{{M{\rm{D}}}}{{BE}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\) (hệ quả định lí Thales) (4)

Xét DGBE có DN // BE nên \(\frac{{{\rm{ND}}}}{{BE}} = \frac{{{\rm{GD}}}}{{{\rm{GE}}}}\) (hệ quả định lí Thales) (5)

Từ (3), (4) và (5), suy ra \(\frac{{{\rm{MD}}}}{{BE}} = \frac{{{\rm{ND}}}}{{{\rm{BE}}}}\)

Hay MD = ND

Do đó D là trung điểm của MN

Vậy D là trung điểm của MN.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang ABCD (AB // CD, AB < CD), hai tia phân giác của góc B và góc C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC cắt AB, CD lần lượt tại E và F.

a) Chứng minh tam giác BEI cân tại E và tam giác IFC cân tại F.

b) Chứng minh EF = BE + CF.

Xem đáp án » 12/07/2023 102

Câu 2:

Cho tam giác ABC vuông tại A, đường cao AH. Qua H kẻ các đường thẳng song song với AB và AC lần lượt cắt AC tại E, AB tại D.

a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật.

b) Gọi M, N lần lượt là trung điểm của BH và CH. Biết AB = 6 cm; AC = 8 cm. Tính BC, DM, DM + EN?

c) Chứng minh rằng: Tứ giác DMNE là hình thang.

Xem đáp án » 12/07/2023 81

Câu 3:

Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.

a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).

b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN).

c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN).

Xem đáp án » 12/07/2023 77

Câu 4:

Chứng minh các hệ thức

a) \(1 + {\tan ^2}a = \frac{1}{{{\rm{co}}{{\rm{s}}^2}a}}\);

b) \(1 + {\cot ^2}a = \frac{1}{{{\rm{si}}{{\rm{n}}^2}a}}\);

c) \(\frac{{\cos a}}{{1 - \sin a}} = \frac{{1 + \sin a}}{{\cos a}}\).

Xem đáp án » 12/07/2023 77

Câu 5:

Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.

a) Chứng minh tam giác EDF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh BI = DI.

c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.

Xem đáp án » 12/07/2023 74

Câu 6:

Phương trình \(\sqrt 3 \sin x - cosx = 1\) tương đương với phương trình nào sau đây?

Xem đáp án » 12/07/2023 73

Câu 7:

Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.

Xem đáp án » 12/07/2023 72

Câu 8:

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK.

a) Chứng minh: Tứ giác BHCK là hình bình hành.

b) Chứng minh BK vuông góc AB và CK vuông góc AC.

c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Xem đáp án » 12/07/2023 72

Câu 9:

Cho tam giác ABC nhọn, BD vuông góc với AC, D thuộc AC, CE vuông góc với AB, E thuộc AB, BD cắt CE tại I. Chứng minh góc BIC bù góc A.

Xem đáp án » 12/07/2023 71

Câu 10:

Cho đường tròn tâm O bán kính R = 2,5 cm và dây AB di động, sao cho AB = 4 cm. Hỏi trung điểm H của AB di động trên đường nào?

Xem đáp án » 12/07/2023 70

Câu 11:

Cho tam giác ABC cân tại A \(\left( {\widehat A < 90^\circ } \right)\), đường cao AH. Kẻ HK AC (K AC).

a) Tính HC, HK, \(\widehat C\) nếu AH = 20 cm, AC = 25 cm.

b) Qua B kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại điểm E. Kẻ BD AC (D AC). Chứng minh \(B{H^2} = \frac{{C{\rm{D}}.CE}}{4}\).

c) Gọi O là giao điểm của BD và AH. Chứng minh \(\frac{{BO}}{{DO}} = \frac{{A{\rm{E}}}}{{A{\rm{D}}}}\).

d) Kẻ KF BC (F BC). Chứng minh CF = AC. sin3E.

Xem đáp án » 12/07/2023 68

Câu 12:

Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:

a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.

b) AM = AN.

c) AI vuông góc với BC.

Xem đáp án » 12/07/2023 66

Câu 13:

Một người bỏ ra 250 000 đồng (tiền vốn) để mua rau. Sau khi bán hết số rau này thì thu được 300 000 đồng. Hỏi người đó được lãi bao nhiêu phần trăm?

Xem đáp án » 12/07/2023 65

Câu 14:

Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:

a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.

b) AM = AN.

c) AI vuông góc với BC.

Xem đáp án » 12/07/2023 63

Câu 15:

Một ô tô chạy 100km hết 13 lít xăng. Hỏi cần bao nhiêu xăng khi ô tô chạy quãng đường 300 000 m?

Xem đáp án » 12/07/2023 62

Câu hỏi mới nhất

Xem thêm »
Xem thêm »