IMG-LOGO

Câu hỏi:

22/07/2024 95

Số các số tự nhiên có 5 chữ số khác nhau và chia hết cho 10 là:


A. 3260;



B. 3168;



C. 5436;



D. 3024.


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Gọi số tự nhiên có 5 chữ số chia hết cho 10 có dạng: \(\overline {abcd0} \).

Ta có a ≠ 0 nên có 9 cách chọn.

Vì các chữ số khác nhau nên các số b, c, d lần lượt có số cách chọn là: 8; 7; 6

Vậy số các cố tự nhiên có 5 chữ số khác nhau chia hết cho 10 là: 9.8.7.6 = 3024.

Đáp án đúng là D.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trung tuyến AM, gọi I là trung điểm AM. Đẳng thức nào sau đây đúng?

Xem đáp án » 13/07/2023 537

Câu 2:

Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường tròn (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại hai điểm M và N (M nằm giữa A và N). Chứng minh:

a) CD // OA.

b) AC là tiếp tuyến của đường tròn (O).

c) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA.

Xem đáp án » 12/07/2023 248

Câu 3:

Cho \(\cos \alpha = \frac{4}{5}\) với 0 < α < \(\frac{\pi }{2}\). Tính sinα.

Xem đáp án » 12/07/2023 122

Câu 4:

Cho tam giác ABC nhọn (AB < AC). Gọi M, N, K lần lượt là trung điểm của AB, AC, BC. Đường cao AH

a) Chứng minh tứ giác MNKH là hình thang cân

b) Gọi E là điểm đối xứng của M qua N. Tứ giác AMCE là hình gì?

c) Tam giác ABC cần có thêm điều kiện gì thì tứ giác AECM là hình chữ nhật?

Xem đáp án » 13/07/2023 119

Câu 5:

Cho tam giác ABC cân tại A. Trên tia đối của tía AC lấy điểm D. Trên tia đối của tia AB lấy điểm E sao cho AD = AE. Chứng minh DECB là hình thang cân.

Xem đáp án » 13/07/2023 116

Câu 6:

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.

a) Chứng minh CDKI là tứ giác nội tiếp.

b) Chứng minh AD.AC = DH.AB

c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.

Xem đáp án » 13/07/2023 112

Câu 7:

Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên Ax, không trùng với A. Gọi E là điểm đối xứng với A qua OM.

a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O)

b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME

c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R.

c) Gọi C là giao điểm của BE và tia Ax, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng.

Xem đáp án » 13/07/2023 107

Câu 8:

Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.

Xem đáp án » 13/07/2023 106

Câu 9:

Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường với nửa đường tròn cắt Ax, By lần lượt tại C, D.

a) Chứng minh rằng CD = AC + BD, \(\widehat {COD} = 90^\circ \)

b) AC.BD = R2

c) Chứng minh AB là tiếp tuyến của đường tròn, đường kính CD

d) AD cắt BC tại N, MN cắt AB tại K. Chứng minh rằng: MN // AC

Xem đáp án » 13/07/2023 105

Câu 10:

Tìm A B C, A ∩ B ∩ C với:

a) A = [1 ; 4], B = (2; 6), C = (1; 2);

b) A = [ 0; 4], B = (1; 5), C = (–3; 1];

c) A = ( –5; 1], B = [3; +∞), C = ( –∞; 2).

Xem đáp án » 12/07/2023 104

Câu 11:

Tìm một số biết rằng gấp số đó lên 2,5 lần rồi trừ đi 1,6 thì được 5,4

Xem đáp án » 12/07/2023 100

Câu 12:

Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH

Xem đáp án » 13/07/2023 98

Câu 13:

Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A (8; 0) và có đỉnh là I (6; −12).

Xem đáp án » 13/07/2023 94

Câu 14:

Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.

a) Chứng minh ∆ABD = ∆ACD;

b) Chứng minh rằng AM = 2.BD;

c) Tính số đo \(\widehat {MAD}\).

Xem đáp án » 12/07/2023 88

Câu 15:

Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.

a) Chứng minh: ∆AMB = ∆AMC.

b) Chứng minh M là trung điểm của cạnh BC.

c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).

Xem đáp án » 13/07/2023 86

Câu hỏi mới nhất

Xem thêm »
Xem thêm »