IMG-LOGO

Câu hỏi:

30/06/2024 64

Cho ∆ABC vuông tại A có AB = 12cm, AC = 16cm, vẽ đường cao AH.

a, Chứng minh: ∆HBA ∆ABC.

b, Tính BC.AH.

c, Trong ∆ABC, kẻ phân giác AD (D BC). Trong ∆ADB kẻ phân giác DE (E AB). Trong ∆ADC kẻ phân giác DF (F AC). Chứng minh: \(\frac{{EA}}{{EB}}.\frac{{DB}}{{DC}}.\frac{{FC}}{{FA}} = 1\) .

Trả lời:

verified Giải bởi Vietjack

Cho ∆ABC vuông tại A có AB = 12cm, AC = 16cm, vẽ đường cao AH (ảnh 1)

a. Xét ∆HBA và ∆ABC:

\(\widehat B\) chung;

b. Áp dụng định lý Pytago vào ∆ABC vuông tại A

\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{12}^2} + {{16}^2}} = \sqrt {400} = 20\left( {cm} \right)\)

∆HBA ∆ABC \( \Rightarrow \frac{{AB}}{{AH}} = \frac{{BC}}{{BA}} \Rightarrow \frac{{12}}{{AH}} = \frac{{20}}{{12}} \Rightarrow AH = \frac{{36}}{5}\left( {cm} \right)\)

c. DE là đường phân giác \(\widehat {ADB} \Rightarrow \frac{{EA}}{{EB}} = \frac{{DA}}{{DB}}\left( 1 \right)\)

DF là đường phân giác \(\widehat {ADC} \Rightarrow \frac{{FC}}{{FA}} = \frac{{DC}}{{DA}}\left( 2 \right)\)

AD là đường phân giác \(\widehat {ABC} \Rightarrow \frac{{DC}}{{DB}} = \frac{{AC}}{{AB}}\left( 3 \right)\)

(1), (2), (3) \( \Rightarrow \frac{{EA}}{{EB}}.\frac{{FC}}{{FA}}.\frac{{DC}}{{DB}} = \frac{{DA}}{{DB}}.\frac{{DC}}{{DA}}.\frac{{AC}}{{AB}} \Rightarrow \frac{{EA}}{{EB}}.\frac{{FC}}{{FA}}.\frac{{DC}}{{DB}} = \frac{{DB}}{{DC}}.\frac{{AC}}{{AB}} = \frac{{AB}}{{AC}}.\frac{{AC}}{{AB}} = 1\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.

Xem đáp án » 13/07/2023 790

Câu 2:

Một đoạn dây dẫn được uốn thành hình chữ nhật, có các cạnh a = 16 cm, b = 30 cm, trong đó có dòng điện cường độ I = 6A chạy qua. Xác định cảm ứng từ tại tâm hình chữ nhật ?

Xem đáp án » 13/07/2023 245

Câu 3:

Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?

Xem đáp án » 13/07/2023 232

Câu 4:

Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.

Xem đáp án » 13/07/2023 198

Câu 5:

Cho ∆ABC vuông tại A có đường cao AH. Kẻ HE, HF vuông góc với AB, AC. Chứng minh rằng: \(\frac{{EB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).

Xem đáp án » 13/07/2023 187

Câu 6:

Cho ∆ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A (D, E là các tiếp điểm khác H). Chứng minh rằng:

a. 3 điểm D, A, E thẳng hàng.

b. DE tiếp xúc với đường tròn có đường kính BC.

Xem đáp án » 13/07/2023 150

Câu 7:

Cho ∆ABC nhọn, đường cao AH. Kẻ HD AB, HE AC.

a.Chứng minh AD.AB = AE.AC.

b. Chứng minh \(\frac{{AD}}{{BD}} = \frac{{A{H^2}}}{{B{H^2}}}\).

Xem đáp án » 13/07/2023 142

Câu 8:

Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O).

a, Chứng minh bốn điểm A, P, M, O cùng thuộc một đường tròn.

b, Chứng minh BM // OP.

c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.

d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.

Xem đáp án » 13/07/2023 103

Câu 9:

Cho ∆ABC vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}\)BC.

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Xem đáp án » 13/07/2023 98

Câu 10:

Một đội công nhân có 25 người nhận sửa xong một quãng đường trong 9 ngày. Hỏi muốn làm xong quãng đường đó trong 5 ngày thì cần thêm bao nhiêu người ?(mức làm của mỗi người như nhau).

Xem đáp án » 13/07/2023 97

Câu 11:

Giải hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^4} + 2{x^3}y + {x^2}{y^2} = 2x + 9}\\{{x^2} + 2xy = 6x + 6}\end{array}} \right.\).

Xem đáp án » 13/07/2023 93

Câu 12:

Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD.

a. Tứ giác DEBF là hình gì? Vì sao?

b. Chứng minh 3 đường thẳng AC, BD, EF đồng quy.

c. Gọi giao điểm của AC với DE và BF theo thứ tự là M, N. Chứng minh tứ giác EMFN là hình bình hành.

Xem đáp án » 13/07/2023 86

Câu 13:

Gọi M là điểm bất kì trên đoạn thẳng AB. Vẽ về một phía của AB các hình vuông AMCD, BMEF.

a) Chứng minh rằng AE BC.

b) Gọi H là giao điểm của AE và BC Chứng minh rằng ba điểm D,H, F thẳng hàng.

c) Chứng minh rằng đường thẳng DF luôn luôn đi qua một điểm cố định khi điểm M chuyển động trên đoạn thẳng AB cố định.

Xem đáp án » 13/07/2023 82

Câu 14:

Hai đường thẳng xy và zt cắt nhau tại O sao cho \(\widehat {xOz} = 70^\circ \).

a. Tính số đo các góc tạo thành.

b. Vẽ tia Om là tia phân giác của \(\widehat {zOy}\) và vẽ tia On là tia đối của tia Om.

Tính số đo \(\widehat {xOn}\), từ đó chỉ ra tia Ox không là tia phân giác của \(\widehat {zOn}\).

Xem đáp án » 13/07/2023 81

Câu 15:

Cho một số có ba chữ số biết rằng khi viết thêm chữ số 5 vào bên phải số đó thì số đó tăng thêm 2444 đơn vị. Tìm số đó.

Xem đáp án » 13/07/2023 81

Câu hỏi mới nhất

Xem thêm »
Xem thêm »