Lời giải:
Đặt B = \(\widehat B\), C = \(\widehat C\).
Theo định lí tổng 3 góc trong tam giác ABC ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).
Suy ra \(\widehat B + \widehat C = 180^\circ - \widehat A = 180^\circ - 75^\circ = 105^\circ \) hay B + C = 105°.
Theo đề bài ta có: \(\frac{B}{C} = \frac{4}{3} \Rightarrow \frac{B}{4} = \frac{C}{3} = \frac{{B + C}}{{4 + 3}} = \frac{{105^\circ }}{7} = 15^\circ \).
\(\frac{B}{4} = 15 \Rightarrow \widehat B = 60^\circ ;\frac{C}{3} = 15 \Rightarrow \widehat C = 45^\circ \).
Gọi AH là đường cao của tam giác ABC.
Ta có: \(\sin B = \frac{{AH}}{{AB}} \Rightarrow AH = \sin B.AB \Rightarrow AH = \sin 60^\circ .10 = 5\sqrt 3 cm\)
\(\cos B = \frac{{HB}}{{AB}} \Rightarrow HB = \cos B.AB \Rightarrow HB = \cos 60^\circ .10 = 5cm\)
\(\sin C = \frac{{AH}}{{AC}} \Rightarrow AC = \frac{{AH}}{{\sin C}} \Rightarrow AC = \frac{{5\sqrt 3 }}{{\sin 45^\circ }} = 5\sqrt 6 cm\)
\(\cos C = \frac{{HC}}{{AC}} \Rightarrow HC = \cos C.AC \Rightarrow HC = \cos 45^\circ .5\sqrt 6 = 5\sqrt 3 cm\)
Ta lại có: BC = HB + HC = \(5 + 5\sqrt 3 \approx 14cm\).
Diện tích tam giác ABC là \({S_{\Delta ABC}} = \frac{1}{2}AH.BC \approx \frac{1}{2}.5\sqrt 3 .14 = 35\sqrt 3 \) (cm2).
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Cho ∆ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a. AC = EB và AC // BE.
b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K thẳng hàng.
c. Từ E kẻ EH ⊥ BC (H ∈ BC). Biết \(\widehat {HBE}\)= 50\(^\circ \), \(\widehat {MEB}\) = 25\(^\circ \), tính \(\widehat {HEM}\) và \(\widehat {BME}\).
Cho ∆ABC vuông tại A, có phân giác AD.
Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).
Viết phương trình đường thẳng d trong các trường hợp sau:
a. d đi qua M(–2; 5) và vuông góc với \({d_1}:y = - \frac{1}{2}x + 2\).
b. d // \({d_1}:y = - 3x + 4\) và đi qua giao của 2 đường thẳng\({d_2}:y = 2x - 3;{d_3}:y = 3x - \frac{7}{2}\).
Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.