Lời giải:
\(\Delta = {m^2} - 4\left( {2m - 4} \right) = {\left( {m - 4} \right)^2} \ge 0\forall m\)khi đó PT có 2 nghiệm \({x_1},{x_2}\)thỏa mãn
P = 2m – 4; S = –m
Trước hết ta tìm điều kiện để (1) có 2 nghiệm đều âm:
\(\left\{ {\begin{array}{*{20}{c}}{P > 0}\\{S < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2m - 4 > 0}\\{ - m < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > 2}\\{m > 0}\end{array}} \right. \Leftrightarrow m > 2\)
Vậy điều kiện để (1) có ít nhất 1 nghiệm không âm là m ≤ 2.
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Cho ∆ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a. AC = EB và AC // BE.
b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K thẳng hàng.
c. Từ E kẻ EH ⊥ BC (H ∈ BC). Biết \(\widehat {HBE}\)= 50\(^\circ \), \(\widehat {MEB}\) = 25\(^\circ \), tính \(\widehat {HEM}\) và \(\widehat {BME}\).
Cho ∆ABC vuông tại A, có phân giác AD.
Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).
Viết phương trình đường thẳng d trong các trường hợp sau:
a. d đi qua M(–2; 5) và vuông góc với \({d_1}:y = - \frac{1}{2}x + 2\).
b. d // \({d_1}:y = - 3x + 4\) và đi qua giao của 2 đường thẳng\({d_2}:y = 2x - 3;{d_3}:y = 3x - \frac{7}{2}\).
Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.