Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Lời giải
a) Vì BK là đường cao của tam giác ABC nên \(\widehat {AKB} = 90^\circ \)
Suy ra tam giác AKI vuông tại K
Do đó K thuộc đường tròn đường kính AI
b) Gọi O là trung điểm của AI
Vì OA = OK nên tam giác OAK cân tại O
Suy ra \(\widehat {OAK} = \widehat {OK{\rm{A}}}\)
Vì tam giác BCK vuông ở K nên \(\widehat {KBC} + \widehat {KCB} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Vì tam giác ACH vuông ở H nên \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {KBC} = \widehat {HAC}\)
Mà \(\widehat {OAK} = \widehat {OK{\rm{A}}}\) (chứng minh trên)
Suy ra \(\widehat {KBC} = \widehat {OK{\rm{A}}}\) (1)
Vì tam giác ABC cân tại A, AH là đường cao
Nên AH là đường trung tuyến
Hay H là trung điểm của BC
Xét tam giác BCK vuông ở K có KH là trung tuyến
Suy ra BH = HK
Do đó tam giác BHK cân tại H
Suy ra \(\widehat {BHK} = \widehat {BKH}\) (2)
Từ (1) và (2) suy ra \(\widehat {AKO} = \widehat {BKH}\)
Mà \(\widehat {AKO} + \widehat {OKB} = \widehat {AKB} = 90^\circ \)
Suy ra \(\widehat {BKO} + \widehat {BKH} = 90^\circ \)
Hay \(\widehat {HOK} = 90^\circ \)
Xét (O) có OH ⊥ HK
Suy ra HK là tiếp tuyến của (O)
Vậy HK là tiếp tuyến của đường tròn đường kính AI.
Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn (gọi tâm của nó là O).
b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O).
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Cho hàm số bậc nhất y = ax + 3.
a) Xác định hệ số góc a, biết rằng đồ thị của hàm số đi qua điểm A(2; 6).
b) Vẽ đồ thị của hàm số với hệ số a tìm được ở câu a.
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(– 4; 1); B(2; 4); C(2; –2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
Cho tam giác ABC nội tiếp đường tròn tâm O trực tâm H đường kính AD
a) Chứng minh \(\overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {H{\rm{D}}} \).
b) Gọi M là trung điểm BC. Chứng minh \(\overrightarrow {AH} = 2\overrightarrow {OM} \).
c) Gọi H' là điểm đối xứng với H qua O. Chứng minh \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HH'} \).
d) Gọi D' là điểm đối xứng với B qua O. Chứng minh \(\overrightarrow {AH} = \overrightarrow {D'C} \).
Cho 7 điểm A, B, C, D, E, F, G. Chứng minh
a) \(\overrightarrow {AB} + \overrightarrow {C{\rm{D}}} + \overrightarrow {EF} + \overrightarrow {GA} = \overrightarrow {CB} + \overrightarrow {E{\rm{D}}} + \overrightarrow {GF} \).
b) \(\overrightarrow {AB} - \overrightarrow {AF} + \overrightarrow {C{\rm{D}}} - \overrightarrow {CB} + \overrightarrow {EF} - \overrightarrow {E{\rm{D}}} = \overrightarrow 0 \).
Cho hàm số bậc nhất y = (m – 1)x + 2m – 5 (d1).
a) Tính giá trị của m để đường thẳng (d1) song song với đường thẳng y = 3x + 1 (d2).
b) Với giá trị nào của m thì đường thẳng (d1) và (d2) cắt nhau tại một điểm trên trục hoành.
Cho biểu thức:
\(A = \frac{{\sqrt x + 1}}{{\sqrt x - 2}} + \frac{2}{{\sqrt x + 3}} - \frac{{9\sqrt x - 3}}{{x + \sqrt x - 6}}\) và \(B = \frac{{x - \sqrt x + 1}}{{\sqrt x - 1}}\) với x ≥ 0, x ≠ 1, x ≠ 4.
a) Tính giá trị biểu thức B khi x = 9.
b) Rút gọn A.
c) Chứng minh rằng khi A > 0 thì B ≥ 3.