IMG-LOGO

Câu hỏi:

30/06/2024 138

Cho tam giác ABC đều cạnh bằng a, trọng tâm G. Tích vô hướng của hai vectơ \(\overrightarrow {BC} .\overrightarrow {CG} \)

A. \(\frac{{{a^2}}}{{\sqrt 2 }}\);

B. \( - \frac{{{a^2}}}{{\sqrt 2 }}\);

C. \(\frac{{{a^2}}}{2}\);

D. \( - \frac{{{a^2}}}{2}\).

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Media VietJack

Vì tam giác ABC đều cạnh a nên AB = BC = AC = a và \(\widehat {ACB} = 60^\circ \)

Vì tam giác ABC đều có G là trọng tâm nên G là giao điểm của ba đường phân giác

Suy ra CG là tia phân giác của \(\widehat {ACB}\)

Do đó \(\widehat {BCG} = \frac{1}{2}\widehat {ACB} = \frac{1}{2}.60^\circ = 30^\circ \)

Gọi CB’ là tia đối của tia BC

Góc tạo bởi \(\overrightarrow {BC} ,\overrightarrow {CG} \)\(\widehat {B'CG}\)

Ta có \(\widehat {B'CG} + \widehat {BCG} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {B'CG} = 180^\circ - 30^\circ = 150^\circ \)

Gọi H là giao điểm của CG và AB

Khi đó CH AB và H là trung điểm của AB

Hay tam giác ACH vuông tại H

Suy ra \(CH = \sqrt {A{C^2} - A{H^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\)

Do đó \(CG = \frac{2}{3}CH = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\)

Ta có

\(\overrightarrow {BC} .\overrightarrow {CG} = \left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {CG} } \right|.co{\rm{s}}\left( {\overrightarrow {BC} ,\overrightarrow {CG} } \right)\)

\( = BC.CG.c{\rm{os}}\left( {\overrightarrow {BC} ,\overrightarrow {CG} } \right) = BC.CG.co{\rm{s150}}^\circ \)

\( = a.\frac{{a\sqrt 3 }}{3}.\frac{{ - \sqrt 3 }}{2} = \frac{{ - {a^2}}}{2}\).

Vậy ta chọn đáp án D.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác abc vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh \(DE = \frac{1}{2}BC\)

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành.

Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Xem đáp án » 18/07/2023 491

Câu 2:

Cho điểm A nằm ngoài đường tròn (O; R). Từ A vẽ các tiếp tuyến AB, AC và cát tuyến ADE đến đường tròn (O). Gọi H là trung điểm của DE.

a) Chứng minh 5 điểm A, B, H, O, C cùng nằm trên một đường tròn.

b) Chứng minh HA là tia phân giác của góc BHC.

Xem đáp án » 18/07/2023 320

Câu 3:

Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.

a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.

b) Chứng minh rằng AB. cos B + AC . cosC = BC.

c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).

Xem đáp án » 18/07/2023 317

Câu 4:

Giải tam giác ABC, biết \(\widehat B = 65^\circ ,\widehat C = 40^\circ \) và BC = 4,2 cm.

Xem đáp án » 18/07/2023 231

Câu 5:

Cho tam giác ABC đều cạnh a, đường cao AH. Tính độ dài của các vecto:

\(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right|,\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|,\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).

Xem đáp án » 18/07/2023 113

Câu 6:

Cho tam giác ABC đều cạnh a, tâm O. Hãy tính:

a) \(\overrightarrow {AB} .\overrightarrow {AC} \).

b) \(\overrightarrow {AB} .\overrightarrow {BC} \).

c) \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\).

d) \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\).

Xem đáp án » 18/07/2023 112

Câu 7:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Xem đáp án » 18/07/2023 112

Câu 8:

Cho tam giác ABC là tam giác đều cạnh a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).

Xem đáp án » 18/07/2023 99

Câu 9:

Cho hàm số y = ax – 4 . Tìm hệ số a, biết rằng

a) Đồ thị hàm số cắt đường thẳng y = 2x – 1 tại điểm có hoành độ bằng 2;

b) Đồ thị hàm số cắt đường thẳng y = –3x + 2 tại điểm có tung độ bằng 5.

Xem đáp án » 18/07/2023 88

Câu 10:

Trong một trang trại, số gà chiếm \(\frac{3}{5}\) tổng số con, số vịt chiếm \(\frac{1}{6}\) tổng số con, còn lại là ngỗng. Nhận xét nào sau đây là đúng?

Xem đáp án » 18/07/2023 86

Câu 11:

Cho tam giác ABC điểm M nằm trong tam giác. Gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB. Gọi A’, B’, C’ thứ tự là điểm đối xứng của M qua D, E, F

a) Chứng minh tứ giác AB’A’B là hình bình hành.

b) Gọi O là giao điểm của AA’ và BB’, chứng minh C và C’ đối xứng nhau qua điểm O.

Xem đáp án » 18/07/2023 82

Câu 12:

Tìm một số biết rằng nếu viết thêm chữ số 6 vào bên phải số đó thì số mới hơn số cần tìm 537 đơn vị.

Xem đáp án » 18/07/2023 79

Câu 13:

Có tất cả bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong đó mỗi số luôn có mặt 2 chữ số lẻ và 3 chữ số chẵn?

Xem đáp án » 18/07/2023 76

Câu 14:

Cho tam giác ABC cân tại A, đường cao AD, trực tâm H. Tính độ dài AD biết AH = 14 cm, BH = HC = 30 cm.

Xem đáp án » 18/07/2023 74

Câu 15:

Tính giá trị biểu thức P = sin2 10° +  sin2 20° + sin2 30° + … + sin2 80° là

Xem đáp án » 18/07/2023 73

Câu hỏi mới nhất

Xem thêm »
Xem thêm »