Một xe chuyển động thẳng nhanh dần đều không vận tốc đầu, trong giây thứ 3 kể từ lúc bắt đầu chuyển động xe đi được 5 m.
a) Tính gia tốc của xe.
b) Tính quãng đường xe đi được sau 10 s.
Lời giải:
a) Quãng đường đi được trong 3s : \({S_3} = \frac{1}{2}a{t^2} = \frac{1}{2}a{.3^2}\)
Quãng đường đi được trong 2s: \({S_2} = \frac{1}{2}a{t^2} = \frac{1}{2}.a{.2^2}\)
Quãng đường đi được trong giây thứ 3 là \({S_3} - {S_2} = \frac{1}{2}a{.3^2} - \frac{1}{2}a{.2^2} = 5\left( m \right)\)
\( \Rightarrow \frac{{9a}}{2} - 2a = 5 \Rightarrow 5a = 10\)\( \Rightarrow a = 2m/s\)
b) Vận tốc sau 10s là: \({v_{10}} = {v_0} + at = 5 + 10.2 = 25m/s\)
Quãng đường đi được sau 10s là: \(s = \frac{{v_{10}^2}}{{2a}} = 156,25(m)\)Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA: