Lời giải:
Vận tốc thuyền khi xuôi dòng là: \[{v_{TB}} = {v_{TN}} + {v_{NB}} = 5 + {v_{NB}}\]
Vận tốc thuyền khi ngược dòng là: \[v{'_{TB}} = {v_{TN}} - {v_{NB}} = 5 - {v_{NB}}\]
Thời gian thuyền đi xuôi dòng là: \[{t_1} = \frac{{AB}}{{{v_{TB}}}} = \frac{6}{{5 + {v_{NB}}}}\]
Thời gian thuyền đi ngược dòng là: \[{t_2} = \frac{{AB}}{{v{'_{TB}}}} = \frac{6}{{5 - {v_{NB}}}}\]
Có \[t = {t_1} + {t_2} = 2,5h\]\[ \to \frac{6}{{5 + {v_{NB}}}} + \frac{6}{{5 - {v_{NB}}}} = 2,5\]\[ \to {v_{NB}} = 1km/h;{t_1} = \frac{6}{{5 + 1}} = 1h\]
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA: