Lời giải:
Có: S là cả quãng đường \[ \Rightarrow \frac{S}{2}\] là nửa quãng đường (km)
Thời gian người này dự định đi là: \[t = \frac{S}{v} = \frac{S}{5}\left( h \right)\]
Thời gian người này đi bộ là: \[{t_1} = \frac{S}{{\frac{2}{v}}} = \frac{S}{{\frac{2}{5}}} = \frac{S}{{10}}\left( h \right)\]
Thời gian người này đi xe đạp cùng bạn là: \[{t_2} = \frac{S}{{\frac{2}{{{v_1}}}}} = \frac{S}{{\frac{2}{{12}}}} = \frac{S}{{24}}\left( h \right)\]
Ta có: \[t - \frac{{28}}{{60}} = {t_1} + {t_2}\]\[ \Rightarrow \frac{S}{5} - \frac{7}{{15}} = \frac{S}{{10}} + \frac{S}{{24}}\]\[ \Rightarrow \frac{S}{5} - \frac{S}{{10}} - \frac{S}{{24}} = \frac{7}{{15}}\]\[ \Rightarrow S = 8(km)\]
Người này đi bộ hết quãng đường thì hết thời gian: \[t = \frac{S}{v} = \frac{8}{5} = 1,6\left( h \right)\]
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m