Một người phải dùng một lực 80 N để kéo một gầu nước đầy từ dưới giếng sâu 9 m lên đều trong 15 giây.
a) Tính công và công suất của người.
b) Tính dung tích của nước trong gầu. Biết khối lượng của gầu khi không có nước là 1 kg. Khối lượng riêng của nước là 1000 kg/m3.
Lời giải:
a) Công của người kéo là: \[A = F.s = 80.9 = 720\,\,(J)\]
Công suất của người kéo là: \[{\rm{P}} = \frac{A}{t} = \frac{{720}}{{15}} = 48\,\,(W)\]
b) Ta có: \[P = F = 80\,\,(N)\]
mà \[P = 10m \Rightarrow m = \frac{P}{{10}} = \frac{{80}}{{10}} = 8\,\,(kg)\]
Ta có: \[{m_{nuoc}} = m - {m_{gau}} = 8 - 1 = 7\,\,(kg)\]
Vậy thể tích của nước là: \[{V_{nuoc}} = \frac{{{m_{nuoc}}}}{{{D_{nuoc}}}} = \frac{7}{{1000}} = 0,007({m^3}) = 7(d{m^3})\] hay 7 lít.
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA: