Sau 10 s một chiếc xe giảm vận tốc từ 54 km/h xuống còn 18 km/h. Nó chuyển động thẳng đều trong 30 s và đi thêm 10 s thì ngừng hẳn
a. Tính gia tốc của xe trong mỗi giai đoạn chuyển động.
b. Tính tốc độ trung bình của xe chuyển động.
Lời giải:
\[54km/h{\rm{ }} = {\rm{ }}15m/s\]
\[18km/h = 5m/s\]
a) Gia tốc của xe sau 10 s đầu là: \[a = \frac{{v - {v_0}}}{t} = \frac{{5 - 15}}{{10}} = - 1\left( {m/{s^2}} \right)\]
Gia tốc của xe trong 30 s: \[a = 0\]
Gia tốc của xe 10 s cuối: \[a = \frac{{0 - 5}}{{10}} = - 0,5\left( {m/{s^2}} \right)\]
b) Quãng đường xe đi trong 10 s đầu: \[{s_1} = \frac{{{5^2} - {{15}^2}}}{{2.\left( { - 1} \right)}} = 100\,m\]
Quãng đường xe đi trong 30 s: \[{s_2} = 5.30 = 150\,m\]
Quãng đường xe đi 10 s cuối: \[{s_3} = \frac{{{0^2} - {5^2}}}{{2.\left( { - 0,5} \right)}} = 25\,m\]
Tốc độ trung bình của xe chuyển động là:
\[v = \frac{s}{t} = \frac{{100 + 150 + 25}}{{10 + 30 + 10}} = 5,5\,m/s\]
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA: