Lời giải:
Đáp án đúng là B
Độ lớn lực kéo về: \[\left| {{F_{kv}}} \right| = m\left| a \right|\]
Công thức độc lập thời gian: \[\frac{{{v^2}}}{{{\omega ^2}}} + \frac{{{a^2}}}{{{\omega ^4}}} = {A^2}\]
Cơ năng của vật: \[{\rm{W}} = \frac{1}{2}m{\omega ^2}{A^2}\]
Cách giải:
Khi lực kéo về có độ lớn 0,8N và \[0,5\sqrt 2 N\], ta có:
\[\left\{ \begin{array}{l}\left| {{a_1}} \right| = \frac{{\left| {{F_{kv1}}} \right|}}{m} = \frac{{0,8}}{{0,1}} = 8(m/{s^2})\\\left| {{a_2}} \right| = \frac{{\left| {{F_{kv2}}} \right|}}{m} = \frac{{0,5\sqrt 2 }}{{0,1}} = 5\sqrt 2 (m/{s^2})\end{array} \right.\]
Áp dụng công thức độc lập với thời gian cho hai thời điểm, ta có:
\[\left\{ \begin{array}{l}\frac{{v_1^2}}{{{\omega ^2}}} + \frac{{a_1^2}}{{{\omega ^4}}} = {A^2} \Rightarrow \frac{{{{0,6}^2}}}{{{\omega ^2}}} + \frac{{{8^2}}}{{{\omega ^4}}} = {A^2}\\\frac{{v_2^2}}{{{\omega ^2}}} + \frac{{a_2^2}}{{{\omega ^4}}} = {A^2} \Rightarrow \frac{{{{\left( {0,5\sqrt 2 } \right)}^2}}}{{{\omega ^2}}} + \frac{{{{\left( {5\sqrt 2 } \right)}^2}}}{{{\omega ^4}}} = {A^2}\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}\omega = 10\,\,(rad/s)\\A = 0,1\,\,(m)\end{array} \right.\]
Cơ năng của con lắc là: \[{\rm{W}} = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2}{.0,1.10^2}{.0,1^2} = 0,05(J)\]
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m