Lời giải:
\[T = \frac{{2\pi }}{\omega } \Rightarrow \omega = \frac{{2\pi }}{T}\]\[ \Rightarrow {\omega _1} = \sqrt {\frac{k}{{{m_1}}}} = \frac{{2\pi }}{{0,6}} \Leftrightarrow \frac{k}{{{m_1}}} = \frac{{100{\pi ^2}}}{9} \Rightarrow {m_1} = \frac{{9k}}{{1000}}\](kg)
\[{\omega _2} = \sqrt {\frac{k}{{{m_2}}}} = \frac{{2\pi }}{{0,8}} \Leftrightarrow \frac{k}{{{m_2}}} = \frac{{25{\pi ^2}}}{4} \Rightarrow {m_2} = \frac{{4k}}{{25{\pi ^2}}} = \frac{{4k}}{{250}}(kg)\]
\[ \Rightarrow \omega ' = \sqrt {\frac{k}{{{m_1} + {m_2}}}} = \sqrt {\frac{k}{{\frac{k}{{40}}}}} = 2\sqrt {10} = 2\pi (rad/s)\]\[ \Rightarrow T' = \frac{{2\pi }}{{\omega '}} = \frac{{2\pi }}{{2\pi }} = 1(s)\]
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA: