Lời giải:
Đáp án đúng là A
+ Vì \[\left| {{q_2}} \right| > \left| {{q_1}} \right|\]và \[{q_1} > 0;{q_2} < 0\] nên điểm đặt q3 nằm trên đường thẳng đi qua \[{q_1},{q_2}\]và nằm phía ngoài gần \[{q_1}\].
+ Để cả 3 điện tích đều nằm cân bằng thì \[{q_3}\] phải là điện tích âm.
+ Ta có: \[{F_{13}} = {F_{23}} \Leftrightarrow k.\frac{{\left| {{q_1}.{q_3}} \right|}}{{r_{13}^2}} = k.\frac{{\left| {{q_2}.{q_3}} \right|}}{{r_{23}^2}}\]
Mà \[{r_{23}} - {r_{13}} = 12 \to \left\{ \begin{array}{l}{r_{13}} = 6\\{r_{23}} = 18\end{array} \right.\]
+ Mặt khác: \[{F_{13}} = {F_{12}}\]\[ \Leftrightarrow k.\frac{{\left| {{q_1}.{q_3}} \right|}}{{r_{13}^2}} = k.\frac{{\left| {{q_1}.{q_2}} \right|}}{{r_{12}^2}}\]\[ \Leftrightarrow \left| {{q_3}} \right| = \frac{{\left| {{q_2}} \right|.r_{13}^2}}{{r_{12}^2}} = \frac{{{{1,8.10}^{ - 7}}{{.6}^2}}}{{{{12}^2}}} = {4,5.10^{ - 8}}C\]
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m