Lời giải:
Tóm tắt:
\({U_1} = 6V\)
\({U_2} = 9V\)
\({I_1} = {I_2}\)
\(\frac{{{R_2}}}{{{R_1}}} = ?\)
Ta có: \({R_2} = \frac{{{U_2}}}{{{I_2}}}\); \({R_1} = \frac{{{U_1}}}{{{I_1}}}\)
Tỉ số \(\frac{{{R_2}}}{{{R_1}}}\) là: \(\frac{{{R_2}}}{{{R_1}}} = \frac{{\frac{{{U_2}}}{{{I_2}}}}}{{\frac{{{U_1}}}{{{I_1}}}}} = \frac{{{U_2}}}{{{I_2}}}.\frac{{{I_1}}}{{{U_1}}} = \frac{{{U_2}}}{{{U_1}}} = \frac{9}{6} = \frac{3}{2}\)
Một con lắc đơn có chiều dài l = 1 m được kéo ra khỏi vị trí cân bằng một góc \[{\alpha _{0\;}} = {5^{o\;}}\]so với phương thẳng đứng rồi thả nhẹ cho vật dao động.
Cho \[g\; = \;{{\rm{\pi }}^2}\; = \;10m/{s^2}\]. Vận tốc của con lắc khi về đến vị trí cân bằng có giá trị là:
Dựa vào công thức tính áp suất \[p = \frac{F}{S}\], hãy chứng minh công thức \[p = d.h\]Trong đó: p là áp suất ở đáy cột chất lỏng
D là trọng lượng riêng của chất lỏng
H là chiều cao cột chất lỏng
Với p tính bằng Pa, d tính bằng N/m3, h tính bằng m
Một điện trường đều cường độ 4000 V/m, có phương song song với cạnh huyền BC của một tam giác vuông ABC có chiều từ B đến C, biết AB = 6 cm, AC = 8 cm. Tính hiệu điện thế giữa hai điểm BA: