Lời giải
Đáp án đúng là: A
Số cách lấy ra 8 viên bi bất kì: \(C_{16}^8 = 12\,\,870\)
Số cách lấy ra 8 viên bi không có màu vàng mà chỉ có hai màu xanh và đỏ: \(C_7^7C_5^1 + C_7^6C_5^2 + C_7^5C_5^3 + C_7^4C_5^4 + C_7^3C_5^5 = 495\)
Số cách lấy ra 8 viên bi không có màu đỏ mà có hai màu xanh và vàng:
\(C_7^7C_4^1 + C_7^6C_4^2 + C_7^5C_4^3 + C_7^4C_4^4 = 165\)
Số cách lấy ra 8 viên bi không có màu xanh mà chỉ có hai màu đỏ và vàng:
\(C_5^5C_4^3 + C_5^4C_4^4 = 9\)
Số cách lấy ra 8 viên bi có đủ 3 màu:
12 870 − (495 + 165 + 9) = 12 201 (cách).
Cho đường tròn (O), đường kính AB cố định, M là 1 điểm thuộc (O), (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh rằng:
a) 3 điểm O, M, D thẳng hàng.
b) Tam giác COD là tam giác cân.
c) Gọi N là giao điểm của OC và (I). Chứng minh khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định.
Cho tam giác ABC nhọn. Gọi M và N lần lượt là trung điểm của AB, BC.
a) Tính độ dài của MN biết AC = 16cm.
b) Gọi I là trung điểm của AC. Chứng minh tứ giác BMIN là hình bình hành.
c) Trên tia đối của tia NM lấy E sao cho N là trung điểm ME. Gọi K là giao điểm của EI và MC. Chứng minh MC = 3KC.
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.