Cho: \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0\) (abc ≠ 0). Tính biểu thức: \(A = \frac{{b + c}}{a} + \frac{{c + a}}{b} + \frac{{a + b}}{c}\).
Ta có: \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0\)
\( \Leftrightarrow \frac{{ab + bc + ca}}{{abc}} = 0\)
⇔ ab + bc + ca = 0
Mặt khác, \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0\)
\( \Leftrightarrow \frac{1}{a} + \frac{1}{b} = - \frac{1}{c}\)
\( \Leftrightarrow {\left( {\frac{1}{a} + \frac{1}{b}} \right)^3} = - \frac{1}{{{c^3}}}\)
\( \Leftrightarrow \frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + 3.\frac{1}{{ab}}.\left( {\frac{1}{a} + \frac{1}{b}} \right) = - \frac{1}{{{c^3}}}\)
\( \Leftrightarrow \frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + 3.\frac{1}{{ab}}.\left( { - \frac{1}{c}} \right) = \frac{{ - 1}}{{{c^3}}}\)
\( \Leftrightarrow \frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + \frac{1}{{{c^3}}} = \frac{3}{{abc}}\) (*)
Khi đó: \(\frac{{\left( {b + c} \right)}}{a} = \frac{{ab + ac}}{{{a^2}}} = \frac{{ - bc}}{{{a^2}}} = \frac{{ - abc}}{{{a^2}}}\)
Tương tự ta có: \(\frac{{\left( {a + b} \right)}}{c} = \frac{{ - abc}}{{{c^3}}}\); \(\frac{{\left( {a + c} \right)}}{{{b^2}}} = \frac{{ - abc}}{{{b^3}}}\).
\(M = \frac{{ - abc}}{{{a^3}}} + \frac{{ - abc}}{{{b^3}}} + \frac{{ - abc}}{{{c^3}}}\)
\( = - abc\left( {\frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + \frac{1}{{{c^3}}}} \right)\)
\( = - abc.\frac{3}{{abc}} = - 3\) (theo *)
Vậy M = −3.
Cho đường tròn (O; R) và điểm A sao cho OA = 2R. Vẽ tiếp tuyến AB; AC với (O) (B, C là tiếp điểm).
a) Chứng minh tam giác ABC đều.
b) Đường vuông góc với OB tại O cắt AC tại D. Đường vuông góc với OC tại O cắt AB tại E. Chứng minh tứ giác ADOE là hình thoi.
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D). So sánh \(\widehat {CAD}\) và \(\widehat {CBD}\).
Cho tam giác ABC, I là một điểm trong tam giác, IA, IB, IC theo thứ tự cắt BC, CA, AB ở M, N, P. Chứng minh rằng: \(\frac{{NA}}{{NC}} + \frac{{PA}}{{PB}} = \frac{{IA}}{{IM}}\).
Cho tam giác ABC có \(\widehat A = 90^\circ \), AB = AC, điểm D thuộc cạnh AB. Đường thẳng qua B và vuông góc với CD cắt đường thẳng CA ở K.
Chứng minh rằng: AK = AD.
Trong hệ tọa độ Oxy cho tam giác ABC có B(9; 7), C(11; −1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ MN.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm O . Gọi M là trung điểm của BC; N, P lần lượt là chân đường cao kẻ từ B và C. Đường tròn đi qua 3 điểm M,N,P có phương trình: (T) \({\left( {x - 1} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{25}}{4}\). Tìm phương trình đường tròn ngoại tiếp tam giác ABC.
Cho a, b > 0 và a + b = 4. Tìm GTLN của \(P = \left( {1 - \frac{1}{a}} \right)\left( {1 - \frac{1}{b}} \right)\).
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, E là điểm đối xứng với H qua AC.
a) Chứng minh D đối xứng với E qua A.
b) Tam giác DHE là tam giác gì? Vì sao?
c) Tứgiác BDEC là hình gì? Vì sao?
Cho hình bình hành ABCD, có AC là đường chéo lớn. Kẻ CE vuông góc với AB tại E, BI vuông góc với AC tại I.
Chứng minh rằng:
Cho hình bình hành ABCD, AB = 2AD. Gọi P, Q lần lượt là trung điểm của AB và CD.
a) Tứ giác APQD là hình gì? Vì sao?
b) Gọi I là giao điểm AQ và PD, gọi K là giao điểm của BQ và CP. Chứng minh tứ giác IPKQ là hình chữ nhật.
Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E, HF vuông góc AC tại F .
a) Chứng minh: AE.AB = AF.AC.
b) Cho BH = 3cm, AH = 4cm. Tính AE, BE.
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F.
Chứng minh rằng: , AH² = AE.AB.
Khi nhân một số với 205, do vô ý Tâm đã quên viết chữ số 0 của số 205 nên tích giảm đi 42 120 đơn vị. Tìm tích đúng của phép nhân đó.
Có bao nhiêu số nguyên dương không lớn hơn 2020 mà chia hết cho 2 hoặc cho 3?