IMG-LOGO

Câu hỏi:

04/07/2024 50

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ.

Media VietJackSố nghiệm thực của phương trình f(2 + f(ex)) = 1 là:

A. 1;

B. 2;

Đáp án chính xác

C. 4;

D. 3.

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: B

Số nghiệm của phương trình f(2 + f(ex)) = 1 là số giao điểm của đồ thị hàm số y = f(2 + f(ex)) và đường thẳng y = 1

Media VietJack

Dựa vào đồ thị hàm số ta có:

\(f\left( {2 + f\left( {{e^x}} \right)} \right) = 1\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2 + f\left( {{e^x}} \right) = - 1}\\{2 + f\left( {{e^x}} \right) = {x_0} \in (2;3)}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( {{e^x}} \right) = - 3}\\{f\left( {{e^x}} \right) = {x_0} - 2 \in (0;1)}\end{array}} \right.\)

TH1: f(ex) = –3

\( \Leftrightarrow \left[ \begin{array}{l}{e^x} = 1\\{e^x} = {x_1} < - 1\end{array} \right. \Leftrightarrow x = 0\)

TH2: f(ex) = x0 – 2 (0; 1)

Suy ra phương trình có 3 nghiệm khác 0

Do đó: \(\left[ \begin{array}{l}{e^x} = a < 0\\{e^x} = b < 0\\{e^x} = c > 0\end{array} \right. \Leftrightarrow x = \ln c \ne 0\)

Vậy phương trình có 2 nghiệm phân biệt.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, trung tuyến AM. Kẻ MD vuông góc với AB và Me vuông góc với AC.

a) Tứ giác ADME là hình gì? Vì sao?

b) Tìm điều kiện của tam giác ABC để tứ giác ADME là hình vuông.

c) Tính độ dài AM?

d) Tính diện tích tam giác ABM?

Xem đáp án » 01/08/2023 429

Câu 2:

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh: 

a) ∆DEB = ∆DFC;

b) ∆AED = ∆AFD;

c) AD là tia phân giác của \(\widehat {BAC}\).

Xem đáp án » 01/08/2023 353

Câu 3:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \). Điểm M di động nằm trên BC sao cho \(\overrightarrow {BM} = x\overrightarrow {BC} \). Tìm x sao cho độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Xem đáp án » 01/08/2023 318

Câu 4:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem đáp án » 01/08/2023 297

Câu 5:

Cho tam giác ABC vuông tại A. Gọi D và E lần lượt là trung điểm của AB và BC.

a) Chứng minh tứ giác ACED là hình thang vuông.

b) Gọi F là điểm đối xứng của E qua D. Chứng minh ACEF là hình bình hành.

c) Chứng minh AEBF là hình thoi.

Xem đáp án » 01/08/2023 254

Câu 6:

Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.

Xem đáp án » 01/08/2023 240

Câu 7:

Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.

a) Chứng minh OI // BC.

b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.

c) Vẽ CH AB (H AB) và BK CD (K CD). Chứng minh CK2 = HA . HB.

Xem đáp án » 01/08/2023 230

Câu 8:

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA vuông góc với BC.

b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO.

c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2cm OA = 4cm.

Xem đáp án » 01/08/2023 223

Câu 9:

Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất:

Xem đáp án » 01/08/2023 190

Câu 10:

Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác (M BC), trên cạnh AC lấy điểm N sao cho AB = AN.

a) Chứng minh ∆ABM = ∆ANM.

b) Chứng minh \(\widehat {BAC} = \widehat {CMN}\).

Xem đáp án » 01/08/2023 178

Câu 11:

Cho tam giác ABC có số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt tỉ lệ với 1, 2, 3. Tính số đo các góc của tam giác ABC? Tam giác ABC là tam giác gì? Vì sao?

Xem đáp án » 01/08/2023 168

Câu 12:

Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm AB, K là điểm đối xứng với H qua điểm I.

a) Tứ giác ACHI là hình gì ? Vì sao?

b) Tứ giác AHBK là hình gì ? Vì sao?

c) Nếu tam giác ABC đều thì ACHI là hình gì?

d) Tam giác ABC có điều kiện gì thì AHBK là hình vuông.

Xem đáp án » 01/08/2023 167

Câu 13:

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).

Xem đáp án » 01/08/2023 123

Câu 14:

Cho một hình chữ nhật và một hình thoi (như hình vẽ), đường chéo EK và FH của hình thoi lần lượt bằng chiều rộng, chiều dài của hình chữ nhật ABCD, biết hình chữ nhật ABCD có chiều dài gấp đôi chiều rộng và có diện tích bằng 32 m2. Tính diện tích hình thoi EFKH.
Media VietJack

Xem đáp án » 01/08/2023 116

Câu 15:

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AB và D là điểm đối xứng của M qua I

a) Chứng minh AD song song BM và tứ giác ADBM là hình thoi.

b) Gọi E là giao điểm của AB và DC. Chứng minh AE = EM.

Xem đáp án » 01/08/2023 115

Câu hỏi mới nhất

Xem thêm »
Xem thêm »