Chứng minh các biểu thức sau không phụ thuộc vào x, y, z.
a) \(\frac{{x - y}}{{xy}} + \frac{{y - z}}{{yz}} + \frac{{z - x}}{{zx}}\);
b) \(\frac{1}{{\left( {x - y} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - z} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - y} \right)\left( {x - z} \right)}}\).
a) \(\frac{{x - y}}{{xy}} + \frac{{y - z}}{{yz}} + \frac{{z - x}}{{zx}}\)
\( = \frac{{\left( {x - y} \right)z}}{{xyz}} + \frac{{\left( {y - z} \right)x}}{{xyz}} + \frac{{\left( {z - x} \right)y}}{{xyz}}\)
\( = \frac{{xz - yz}}{{xyz}} + \frac{{xy - xz}}{{xyz}} + \frac{{yz - xy}}{{xyz}}\)
\( = \frac{{xz - yz + xy - xz + yz - xy}}{{xyz}}\)
\( = \frac{0}{{xyz}} = 0\)
Vậy biểu thức trên không phụ thuộc vào x, y, z.
b) \(\frac{1}{{\left( {x - y} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - z} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - y} \right)\left( {x - z} \right)}}\)
\( = \frac{{x - z}}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}} - \frac{{x - y}}{{\left( {x - z} \right)\left( {y - z} \right)\left( {x - y} \right)}} - \frac{{y - z}}{{\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)
\( = \frac{{\left( {x - z} \right) - \left( {x - y} \right) - \left( {y - z} \right)}}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}}\)
\( = \frac{{x - z - x + y - y + z}}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}}\)
\( = \frac{0}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}} = 0\)
Vậy biểu thức trên không phụ thuộc vào x, y, z.
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Cho tam giác ABC có \(\widehat {ABC} = 30^\circ \), AB = 5, BC = 8. Tính \[\overrightarrow {BA} \,.\,\overrightarrow {BC} \].
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC .
a) Chứng minh rằng các tứ giác AODE, BOCF là hình vuông
b) Nối EC cắt DF tại I. Chứng minh rằng OI ^ CD
c) Biết diện tích hình lục giác ABFCDE = 6. Tính độ dài các cạnh của hình vuông ABCD
d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân.
Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kỳ thuộc nửa đường tròn (M khác A, B). Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó lần lượt tại C và D. Gọi K là giao điểm của BM với Ax. Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM.
Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng của B và C.
a) Chứng minh tứ giác ACED là hình bình hành.
b) Gọi M là trung điểm của BC. Tia AM cắt tia DC tại F. Chứng minh tứ giác BDEF là hình thoi.
c) Gọi I là giao điểm của AE và DC. Tia BI cắt tia DE tại . Chứng minh \(KI = \frac{1}{6}AE.\)
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AC.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD.Cho x + y + z = 0. Rút gọn: \(A = \frac{{{x^2} + {y^2} + {z^2}}}{{{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}}}\).
Cho tam giác nhọn ABC, \(\widehat B > \widehat C\). Gọi H là hình chiếu của A trên BC. Sắp xếp các đoạn thẳng AB, AH, AC theo thứ tự độ dài tăng dần.
Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.
Cho nửa đường tròn (O) đường kính AB. M là trung điểm OA. N là điểm bất kỳ thuộc nửa đường tròn. Qua N kẻ đường thẳng vuông góc với MN cắt các tiếp tuyến tại A và B tại C và D. Tìm vị trí của N để diện tích tam giác DMC min.
Giải phương trình:
a) sin 5x + sin 8x + sin 3x = 0;
b) \(4{\cos ^3}x + 3\sqrt 2 \sin 2x = 8\cos x\).