Lời giải
Đáp án đúng là: C
Hàm số đã cho xác định với mọi x ∈ ℝ.
Điều kiện của bài toán trở thành:
\(m = f\left( \pi \right) = \mathop {\lim }\limits_{x \to \pi } f\left( x \right) = \mathop {\lim }\limits_{x \to \pi } \frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}}\).
\( = \mathop {\lim }\limits_{x \to \pi } \frac{{2{{\cos }^2}\frac{x}{2}}}{{{{\left( {x - \pi } \right)}^2}}} = \mathop {\lim }\limits_{x \to \pi } \frac{{2{{\sin }^2}\left( {\frac{x}{2} - \frac{\pi }{2}} \right)}}{{{{\left( {x - \pi } \right)}^2}}} = \mathop {\lim }\limits_{x \to \pi } \frac{{\frac{1}{4}.2{{\sin }^2}\left( {\frac{x}{2} - \frac{\pi }{2}} \right)}}{{\frac{1}{4}.{{\left( {x - \pi } \right)}^2}}}\)
\( = \mathop {\lim }\limits_{x \to \pi } \frac{{\frac{1}{2}{{\sin }^2}\left( {\frac{{x - \pi }}{2}} \right)}}{{{{\left( {\frac{{x - \pi }}{2}} \right)}^2}}} = \frac{1}{2}\mathop {\lim }\limits_{x \to \pi } {\left[ {\frac{{\sin \left( {\frac{{x - \pi }}{2}} \right)}}{{\left( {\frac{{x - \pi }}{2}} \right)}}} \right]^2}\) (*)
Đặt \(t = \frac{{x - \pi }}{2} \to 0\) khi x → π.
Khi đó (*) trở thành: \(m = \frac{1}{2}\mathop {\lim }\limits_{x \to \pi } {\left( {\frac{{\sin t}}{t}} \right)^2} = \frac{1}{2}{.1^2} = \frac{1}{2}\).
Vậy \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án C.
Cho tam giác ABC, lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} \); \(\overrightarrow {NA} + 3\overrightarrow {NC} = \vec 0\) và \(\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).
a) Tính \(\overrightarrow {PM} ,\,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
b) Chứng minh rằng: M, N, P thẳng hàng.
Cho tam giác ABC vuông tại A, có AH là đường cao, AM là đường trung tuyến. Qua B kẻ đường thẳng vuông góc với AM tại I cắt AC tại E.
a) Chứng minh BI.BE = 2BH.BM.
b) Chứng minh \(\frac{1}{{A{B^2}}} = \frac{1}{{B{E^2}}} + \frac{1}{{B{C^2}}}\).
Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác.
a) Biểu diễn \(\overrightarrow {AB} ,\overrightarrow {AC} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \) và biểu diễn \(\overrightarrow {AJ} \) qua \(\overrightarrow {AB} ,\overrightarrow {AC} \).
b) Biểu diễn \(\overrightarrow {AG} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \).
Cho đường tròn (O; R) có đường kính BC. Lấy A thuộc (O) sao cho AB < AC, vẽ đường cao AH của tam giác ABC.
a) Chứng minh: AH.BC = AB.AC.
b) Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Chứng minh rằng: MA2 = MB.MC.
c) Kẻ HE vuông góc với AB (E thuộc AB) và HF vuông góc với AC (F thuộc AC). Chứng minh AM // EF.
Cho nửa đường tròn (O; R) đường kính AB, vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Trên tia Ax lấy điểm E (E khác A, AE < R), trên nửa đường tròn lấy điểm M sao cho EM = EA, đường thẳng EM cắt tia By tại F.
a) Chứng minh EF là tiếp tuyến của đường tròn (O).
b) Chứng minh tam giác EOF là tam giác vuông.
c) Chứng minh AM.OE + BM.OF = AB.EF.
d) Tìm vị trí điểm E trên tia Ax sao cho \({S_{\Delta AMB}} = \frac{3}{4}{S_{\Delta EOF}}\).