Tính:
a) (x + 2y)2;
b) (x – 3y)(x + 3y);
c) (5 – x)2 .
a) (x + 2y)2
= x2 + 2 . x . 2y + (2y)2
= x2 + 4xy + 4y2
b) (x – 3y)(x + 3y) = x2 – (3y)2 = x2 – 9y2
c) (5 – x)2 = 52 – 2 . 5 . x + x2 = 25 – 10x + x2.
Cho tập X = {x ∈ ℕ | (x2 – 4)(x – 1)(2x2 – 7x + 3) = 0}. Tính tổng S các phần tử của tập hợp X.
Trong mặt phẳng tọa độ Oxy cho A(1; 2). Tìm ảnh A’ qua phép vị tự tâm I(3; –1) tí số k = 2
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M, N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. Mặt phẳng MNP cắt tứ diện theo một thiết diện có diện tích là:
Cho đường tròn tâm (O), từ điểm M ở bên ngoài đường tròn (O) kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D, O và B nằm về hai phía so với cát tuyến MCD).
a) Chứng minh tứ giác MAOB nội tiếp.
b) Chứng minh MB2 = MC . MD.
c) Gọi H là giao điểm của AB và OM. Chứng minh AB là tia phân giác của .
khối chóp S.ABC có đáy ABC là tam giác vuông cân có cạnh huyền BC = a và SA vuông góc với mặt phẳng đáy. Biết góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 45°. Thể tích của hình chóp S.ABC là:
Xét sự biến thiên của hàm số y = tan2x trên một chu kì tuần hoàn. Trong các kết luận sau, kết luận nào đúng?
A. Hàm số đã cho đồng biến trên khoảng và .
B. Hàm số đã cho đồng biến trên khoảng và nghịch biến trên khoảng
C. Hàm số đã cho luôn đồng biến trên khoảng .
D. Hàm số đã cho nghịch biến trên khoảng và đồng biến trên khoảng