Một bộ đề thi Olimpic Toán lớp 11 của Trường THPT Kim Liên mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, trung bình và khó, đồng thời số câu mức khó không ít hơn 2 . Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.
Có tất cả 15 + 10 + 5 = 30 câu hỏi.
Chọn 5 câu bất kì trong 30 câu hỏi được 1 đề thi nên số đề thi được tạo ra là \[C_{50}^3\]
Gọi A là biến cố: “Lấy ra được một đề thi “Tốt”.
• Trường hợp 1: Có 2 câu hỏi ở mức khó \[ \Rightarrow C_5^2.C_{15}^1.C_{10}^2 + C_5^2.C_{15}^2.C_{10}^1\] (đề)
• Trường hợp 2: Có 3 câu hỏi ở mức khó \[ \Rightarrow C_5^3.C_{15}^1.C_{10}^1\] (đề)
Vậy xác suất để đề thi lấy ra là một đề thi “Tốt” là:
\[P\left( A \right) = \frac{{18\,\,750}}{{C_{30}^5}} = \frac{{3\,\,125}}{{23\,\,751}}\].Cho hình chữ nhật ABCD (AB > BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H. QE cắt DC tại M. Gọi N là hình chiếu của E trên AD, MN cắt DE tại O. Chứng minh tam giác OEM là tam giác cân.
Hỏi có bao nhiêu giá trị m nguyên trong [−2017;2017] để phương trình:
log(mx) = 2log(x + 1) có nghiệm duy nhất?
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Cho hình nón (N) có bán kính đáy bằng 4, diện tích xung quanh bằng 20π. Tính thể tích khối nón đã cho.
Một trong các bạn A, B, C và D làm vỡ kính cửa sổ. Khi được hỏi, họ trả lời như sau:
A: “C làm vỡ”.
B: “Không phải tôi”.
C: “D làm vỡ”.
D: “C đã nói dối”.
Nếu có đúng một người nói thật thì ai đã làm vỡ cửa số.
Tích tất cả các nghiệm của phương trình \[\log _3^2x - 2{\log _3}x - 7 = 0\] là?
Cho tam giác ABC, có bao nhiêu điểm M thỏa mãn: \[\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3?\]
Tìm m để phương trình: x2 + mx – 2 = 0 có 2 nghiệm phân biệt x1, x2 cùng nhỏ hơn 1.
Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số:
y = ∣3x4 + 8x3 − 6x2 − 24x − m∣ có 7 điểm cực trị.
Có bao giá trị nguyên của tham số m để phương trình:
4x – m.2x + 1 + 2m2 – 5 = 0 có hai nghiệm phân biệt?
Cho x, y thỏa mãn x – 2y + 2 = 0. Tìm giá trị nhỏ nhất của biểu thức:
\[T = \sqrt {{{(x - 3)}^2} + {{(y - 5)}^2}} + \sqrt {{{(x - 5)}^2} + {{(y - 7)}^2}} \].
Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau từng đôi một. Biết thể tích của khối chóp bằng \[\frac{{{a^3}}}{6}\]. Tính bán kính r của mặt cầu nội tiếp của hình chóp S.ABC.
Chứng minh định lí: “Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông”.