IMG-LOGO

Câu hỏi:

06/07/2024 47

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 1)

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 2)

Gọi H là trung điểm của AB suy ra SH AB .

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH (ABCD)

Gọi O = AC Ç BD.

Ta có: \(\left\{ \begin{array}{l}AC \cap \left( {SBD} \right) = O\\AO = OC\end{array} \right. \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = d\left( {A,\;\left( {SBD} \right)} \right)\)

Lại có: \(\left\{ \begin{array}{l}AH \cap \left( {SBD} \right) = B\\AB = 2HB\end{array} \right. \Rightarrow d\left( {A,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right)\)

\( \Rightarrow d\left( {H,\;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)\)

Do đó \(\frac{{d\left( {C,\;\left( {SBD} \right)} \right)}}{{d\left( {H,\;\left( {SBD} \right)} \right)}} = \frac{{d\left( {A,\;\left( {SBD} \right)} \right)}}{{\frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)}} = 2\).

Kẻ HM BD (M Î BD), kẻ HK SM tại K

Ta có: \(\left\{ \begin{array}{l}BD \bot HM\\BD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\)

\( \Rightarrow BD \bot \left( {SHM} \right) \Rightarrow BD \bot HK\).

Lại có HK SM Þ HK (SBD) tại K Þ HK = d(H, (SBD)).

Vì ABCD là hình vuông nên AO BD mà HM BD Þ HM // AO.

Lại có H là trung điểm của AB nên M là trung điểm của BO.

Suy ra HM là đường trung bình của tam giác ABO

\( \Rightarrow HM = \frac{{AO}}{2} = \frac{1}{2}\,.\,\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\).

Xét tam giác SMH vuông tại H, ta có \(HM = \frac{{a\sqrt 2 }}{4};\;SH = \frac{{a\sqrt 3 }}{2}\) nên

\(\frac{1}{{H{K^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{S{H^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{28}}{{3{a^2}}}\)

\( \Rightarrow HK = \frac{{a\sqrt {21} }}{{14}} \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).

Vậy khoảng cách từ C đến mặt phẳng (SBD) bằng \(\frac{{a\sqrt {21} }}{7}\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một khối chóp có số mặt bằng 2021 thì có số cạnh bằng bao nhiêu?

Xem đáp án » 17/08/2023 402

Câu 2:

Giải phương trình sau: \({7^x}\,.\,{27^{\left( {1\, - \,\frac{1}{x}} \right)}} = 3087\).

Xem đáp án » 17/08/2023 106

Câu 3:

Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [−10; 10] để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có ba đường tiệm cận?

Xem đáp án » 17/08/2023 91

Câu 4:

Tính tổng các nghiệm thuộc khoảng \(\left( { - \frac{\pi }{2};\;\frac{\pi }{2}} \right)\) của phương trình 

4sin2 2x − 1 = 0.

Xem đáp án » 17/08/2023 90

Câu 5:

Có bao nhiêu giá trị m nguyên thuộc khoảng (−10; 10) để đồ thị hàm số \(y = \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}}\) có đúng ba đường tiệm cận?

Xem đáp án » 17/08/2023 75

Câu 6:

Tam giác đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng bao nhiêu?

Xem đáp án » 17/08/2023 74

Câu 7:

Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y (−1).

Xem đáp án » 17/08/2023 74

Câu 8:

Tìm tất cả giá trị thực của tham số m để phương trình cos 2x − (2m + 1)cos x + m + 1 = 0 có nghiệm trên khoảng \(\left( {\frac{\pi }{2};\;\frac{{3\pi }}{2}} \right)\).

Xem đáp án » 17/08/2023 73

Câu 9:

Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Xem đáp án » 17/08/2023 71

Câu 10:

Cho x, y là các số thực không âm thỏa mãn: x2 − 2xy + x − 2y ≤ 0.

Tìm GTLN của M = x2 − 5y2 + 3x.

Xem đáp án » 17/08/2023 71

Câu 11:

Hình chóp có 2020 cạnh thì có bao nhiêu đỉnh?

Xem đáp án » 17/08/2023 68

Câu 12:

Tìm hệ số của số hạng chứa x10 trong khai triển của biểu thức \({\left( {3{x^3} - \frac{2}{{{x^2}}}} \right)^5}\)

Xem đáp án » 17/08/2023 66

Câu 13:

Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d Î ℝ) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:

Cho hàm số y = ax^3 + bx^2 + cx + d (a, b, c, d thuộc R) có đồ thị như hình vẽ bên. (ảnh 1)

Xem đáp án » 17/08/2023 66

Câu 14:

Tìm GTLN, GTNN của hàm số: y = sin²x + 2sinx.cosx − cos²x + 5.

Xem đáp án » 17/08/2023 65

Câu 15:

Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30°, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:

Xem đáp án » 17/08/2023 65

Câu hỏi mới nhất

Xem thêm »
Xem thêm »